Integrand size = 54, antiderivative size = 152 \[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {(2 A b+2 a B-b B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (a-b) (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \]
[Out]
Time = 0.56 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {4173, 4108, 3893, 212, 3886, 221} \[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {(2 a B+2 A b-b B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (a-b) (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {b B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]
[In]
[Out]
Rule 212
Rule 221
Rule 3886
Rule 3893
Rule 4108
Rule 4173
Rubi steps \begin{align*} \text {integral}& = \frac {b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {1}{2} a (2 a A+b B)+\frac {1}{2} a (2 A b+2 a B-b B) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{a} \\ & = \frac {b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+((a-b) (A-B)) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx+\frac {(2 A b+2 a B-b B) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{2 a} \\ & = \frac {b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}-\frac {(2 (a-b) (A-B)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {(2 A b+2 a B-b B) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d} \\ & = \frac {(2 A b+2 a B-b B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (a-b) (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {b B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}
Time = 0.51 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (b B \arcsin \left (\sqrt {1-\sec (c+d x)}\right )-2 (A b+(a-b) B) \arcsin \left (\sqrt {\sec (c+d x)}\right )-\sqrt {2} (a-b) (A-B) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )+b B \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. \(526\) vs. \(2(131)=262\).
Time = 1.82 (sec) , antiderivative size = 527, normalized size of antiderivative = 3.47
| method | result | size |
| parts | \(\frac {\left (A b +a B \right ) \left (\arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}+\arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \cos \left (d x +c \right )^{2}}{d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}-\frac {A \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \cos \left (d x +c \right )}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}-\frac {B b \sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 \cos \left (d x +c \right )^{3} \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\cos \left (d x +c \right )^{3} \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )\right )}{2 d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) | \(527\) |
| default | \(-\frac {\sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 A \cos \left (d x +c \right )^{3} \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, a -2 A \cos \left (d x +c \right )^{3} \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, b -2 B \cos \left (d x +c \right )^{3} \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, a +2 B \cos \left (d x +c \right )^{3} \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, b +2 A \cos \left (d x +c \right )^{3} \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) b +2 A \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) b +2 B \cos \left (d x +c \right )^{3} \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) a -B \cos \left (d x +c \right )^{3} \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) b +2 B \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) a -B \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) b -2 B \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, b \cos \left (d x +c \right )^{2}\right )}{2 d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) | \(614\) |
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 273 vs. \(2 (131) = 262\).
Time = 0.55 (sec) , antiderivative size = 611, normalized size of antiderivative = 4.02 \[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\frac {4 \, B b \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} - {\left (2 \, B a + {\left (2 \, A - B\right )} b + {\left (2 \, B a + {\left (2 \, A - B\right )} b\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b + {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{4 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b + {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - \frac {2 \, B b \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} - {\left (2 \, B a + {\left (2 \, A - B\right )} b + {\left (2 \, B a + {\left (2 \, A - B\right )} b\right )} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \]
[In]
[Out]
Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Timed out} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 1918 vs. \(2 (131) = 262\).
Time = 0.65 (sec) , antiderivative size = 1918, normalized size of antiderivative = 12.62 \[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \]
[In]
[Out]
\[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {{\left (B b \sec \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt {\sec \left (d x + c\right )}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]
[In]
[Out]
Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (A\,a+\frac {A\,b+B\,a}{\cos \left (c+d\,x\right )}+\frac {B\,b}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]
[In]
[Out]