\(\int \cos (x) \tan (6 x) \, dx\) [109]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 7, antiderivative size = 89 \[ \int \cos (x) \tan (6 x) \, dx=\frac {\text {arctanh}\left (\sqrt {2} \cos (x)\right )}{3 \sqrt {2}}+\frac {1}{6} \sqrt {2-\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2-\sqrt {3}}}\right )+\frac {1}{6} \sqrt {2+\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2+\sqrt {3}}}\right )-\cos (x) \]

[Out]

-cos(x)+1/6*arctanh(cos(x)*2^(1/2))*2^(1/2)+1/6*arctanh(2*cos(x)/(1/2*6^(1/2)-1/2*2^(1/2)))*(1/2*6^(1/2)-1/2*2
^(1/2))+1/6*arctanh(2*cos(x)/(1/2*6^(1/2)+1/2*2^(1/2)))*(1/2*6^(1/2)+1/2*2^(1/2))

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {12, 6874, 2098, 213, 1180} \[ \int \cos (x) \tan (6 x) \, dx=\frac {\text {arctanh}\left (\sqrt {2} \cos (x)\right )}{3 \sqrt {2}}+\frac {1}{6} \sqrt {2-\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2-\sqrt {3}}}\right )+\frac {1}{6} \sqrt {2+\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2+\sqrt {3}}}\right )-\cos (x) \]

[In]

Int[Cos[x]*Tan[6*x],x]

[Out]

ArcTanh[Sqrt[2]*Cos[x]]/(3*Sqrt[2]) + (Sqrt[2 - Sqrt[3]]*ArcTanh[(2*Cos[x])/Sqrt[2 - Sqrt[3]]])/6 + (Sqrt[2 +
Sqrt[3]]*ArcTanh[(2*Cos[x])/Sqrt[2 + Sqrt[3]]])/6 - Cos[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 2098

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P /. x -> Sqrt[x]]}, Int[ExpandIntegrand[(PP /. x ->
x^2)^p*Q^q, x], x] /;  !SumQ[NonfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x^2] && PolyQ[Q, x] && ILtQ[p,
 0]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {2 x^2 \left (-3+16 x^2-16 x^4\right )}{1-18 x^2+48 x^4-32 x^6} \, dx,x,\cos (x)\right ) \\ & = -\left (2 \text {Subst}\left (\int \frac {x^2 \left (-3+16 x^2-16 x^4\right )}{1-18 x^2+48 x^4-32 x^6} \, dx,x,\cos (x)\right )\right ) \\ & = -\left (2 \text {Subst}\left (\int \left (\frac {1}{2}-\frac {1-12 x^2+16 x^4}{2 \left (1-18 x^2+48 x^4-32 x^6\right )}\right ) \, dx,x,\cos (x)\right )\right ) \\ & = -\cos (x)+\text {Subst}\left (\int \frac {1-12 x^2+16 x^4}{1-18 x^2+48 x^4-32 x^6} \, dx,x,\cos (x)\right ) \\ & = -\cos (x)+\text {Subst}\left (\int \left (-\frac {1}{3 \left (-1+2 x^2\right )}-\frac {2 \left (-1+8 x^2\right )}{3 \left (1-16 x^2+16 x^4\right )}\right ) \, dx,x,\cos (x)\right ) \\ & = -\cos (x)-\frac {1}{3} \text {Subst}\left (\int \frac {1}{-1+2 x^2} \, dx,x,\cos (x)\right )-\frac {2}{3} \text {Subst}\left (\int \frac {-1+8 x^2}{1-16 x^2+16 x^4} \, dx,x,\cos (x)\right ) \\ & = \frac {\text {arctanh}\left (\sqrt {2} \cos (x)\right )}{3 \sqrt {2}}-\cos (x)-\frac {1}{3} \left (4 \left (2-\sqrt {3}\right )\right ) \text {Subst}\left (\int \frac {1}{-8+4 \sqrt {3}+16 x^2} \, dx,x,\cos (x)\right )-\frac {1}{3} \left (4 \left (2+\sqrt {3}\right )\right ) \text {Subst}\left (\int \frac {1}{-8-4 \sqrt {3}+16 x^2} \, dx,x,\cos (x)\right ) \\ & = \frac {\text {arctanh}\left (\sqrt {2} \cos (x)\right )}{3 \sqrt {2}}+\frac {1}{6} \sqrt {2-\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2-\sqrt {3}}}\right )+\frac {1}{6} \sqrt {2+\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2+\sqrt {3}}}\right )-\cos (x) \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 8.21 (sec) , antiderivative size = 628, normalized size of antiderivative = 7.06 \[ \int \cos (x) \tan (6 x) \, dx=\frac {1}{24} \left ((4+4 i) (-1)^{3/4} \text {arctanh}\left (\frac {-1+\tan \left (\frac {x}{2}\right )}{\sqrt {2}}\right )+(4-4 i) \sqrt [4]{-1} \text {arctanh}\left (\frac {1+\tan \left (\frac {x}{2}\right )}{\sqrt {2}}\right )-24 \cos (x)-\frac {2 \left (1+\sqrt {2}\right ) \left (x-2 \sqrt {3} \text {arctanh}\left (\frac {2+\left (2+\sqrt {2}\right ) \tan \left (\frac {x}{2}\right )}{\sqrt {6}}\right )-\log \left (\sec ^2\left (\frac {x}{2}\right )\right )+\log \left (-\sec ^2\left (\frac {x}{2}\right ) \left (\sqrt {2}-2 \cos (x)+2 \sin (x)\right )\right )\right )}{2+\sqrt {2}}+\sqrt {2} \left (x+2 \sqrt {3} \text {arctanh}\left (\frac {\sqrt {2}+\left (-1+\sqrt {2}\right ) \tan \left (\frac {x}{2}\right )}{\sqrt {3}}\right )-\log \left (\sec ^2\left (\frac {x}{2}\right )\right )+\log \left (\sec ^2\left (\frac {x}{2}\right ) \left (1+\sqrt {2} \cos (x)-\sqrt {2} \sin (x)\right )\right )\right )-\frac {2 \left (2 \left (-2+\sqrt {6}\right ) \text {arctanh}\left (\sqrt {2}+\left (\sqrt {2}-\sqrt {3}\right ) \tan \left (\frac {x}{2}\right )\right )+\left (3 \sqrt {2}-2 \sqrt {3}\right ) \left (x-\log \left (\sec ^2\left (\frac {x}{2}\right )\right )+\log \left (-\sec ^2\left (\frac {x}{2}\right ) \left (\sqrt {3}+\sqrt {2} \cos (x)-\sqrt {2} \sin (x)\right )\right )\right )\right ) \left (\sqrt {2}-\sqrt {3} \sin (x)\right ) \left (-3+\sqrt {6}-\left (-2+\sqrt {6}\right ) \cos (x)+\left (-2+\sqrt {6}\right ) \sin (x)\right )}{-36+15 \sqrt {6}+\left (20-8 \sqrt {6}\right ) \cos (x)+\left (12-5 \sqrt {6}\right ) \cos (2 x)-50 \sin (x)+20 \sqrt {6} \sin (x)+12 \sin (2 x)-5 \sqrt {6} \sin (2 x)}+\frac {2 \left (-2 \left (\sqrt {2}+\sqrt {3}\right ) \text {arctanh}\left (\frac {2+\left (2+\sqrt {6}\right ) \tan \left (\frac {x}{2}\right )}{\sqrt {2}}\right )+\left (3+\sqrt {6}\right ) \left (x-\log \left (\sec ^2\left (\frac {x}{2}\right )\right )+\log \left (-\sec ^2\left (\frac {x}{2}\right ) \left (\sqrt {6}-2 \cos (x)+2 \sin (x)\right )\right )\right )\right ) \left (2+\sqrt {6} \sin (x)\right ) \left (3+\sqrt {6}-\left (2+\sqrt {6}\right ) \cos (x)+\left (2+\sqrt {6}\right ) \sin (x)\right )}{-36-15 \sqrt {6}+4 \left (5+2 \sqrt {6}\right ) \cos (x)+\left (12+5 \sqrt {6}\right ) \cos (2 x)-50 \sin (x)-20 \sqrt {6} \sin (x)+12 \sin (2 x)+5 \sqrt {6} \sin (2 x)}\right ) \]

[In]

Integrate[Cos[x]*Tan[6*x],x]

[Out]

((4 + 4*I)*(-1)^(3/4)*ArcTanh[(-1 + Tan[x/2])/Sqrt[2]] + (4 - 4*I)*(-1)^(1/4)*ArcTanh[(1 + Tan[x/2])/Sqrt[2]]
- 24*Cos[x] - (2*(1 + Sqrt[2])*(x - 2*Sqrt[3]*ArcTanh[(2 + (2 + Sqrt[2])*Tan[x/2])/Sqrt[6]] - Log[Sec[x/2]^2]
+ Log[-(Sec[x/2]^2*(Sqrt[2] - 2*Cos[x] + 2*Sin[x]))]))/(2 + Sqrt[2]) + Sqrt[2]*(x + 2*Sqrt[3]*ArcTanh[(Sqrt[2]
 + (-1 + Sqrt[2])*Tan[x/2])/Sqrt[3]] - Log[Sec[x/2]^2] + Log[Sec[x/2]^2*(1 + Sqrt[2]*Cos[x] - Sqrt[2]*Sin[x])]
) - (2*(2*(-2 + Sqrt[6])*ArcTanh[Sqrt[2] + (Sqrt[2] - Sqrt[3])*Tan[x/2]] + (3*Sqrt[2] - 2*Sqrt[3])*(x - Log[Se
c[x/2]^2] + Log[-(Sec[x/2]^2*(Sqrt[3] + Sqrt[2]*Cos[x] - Sqrt[2]*Sin[x]))]))*(Sqrt[2] - Sqrt[3]*Sin[x])*(-3 +
Sqrt[6] - (-2 + Sqrt[6])*Cos[x] + (-2 + Sqrt[6])*Sin[x]))/(-36 + 15*Sqrt[6] + (20 - 8*Sqrt[6])*Cos[x] + (12 -
5*Sqrt[6])*Cos[2*x] - 50*Sin[x] + 20*Sqrt[6]*Sin[x] + 12*Sin[2*x] - 5*Sqrt[6]*Sin[2*x]) + (2*(-2*(Sqrt[2] + Sq
rt[3])*ArcTanh[(2 + (2 + Sqrt[6])*Tan[x/2])/Sqrt[2]] + (3 + Sqrt[6])*(x - Log[Sec[x/2]^2] + Log[-(Sec[x/2]^2*(
Sqrt[6] - 2*Cos[x] + 2*Sin[x]))]))*(2 + Sqrt[6]*Sin[x])*(3 + Sqrt[6] - (2 + Sqrt[6])*Cos[x] + (2 + Sqrt[6])*Si
n[x]))/(-36 - 15*Sqrt[6] + 4*(5 + 2*Sqrt[6])*Cos[x] + (12 + 5*Sqrt[6])*Cos[2*x] - 50*Sin[x] - 20*Sqrt[6]*Sin[x
] + 12*Sin[2*x] + 5*Sqrt[6]*Sin[2*x]))/24

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.17 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.11

method result size
risch \(-\frac {{\mathrm e}^{i x}}{2}-\frac {{\mathrm e}^{-i x}}{2}-i \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (20736 \textit {\_Z}^{4}+576 \textit {\_Z}^{2}+1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i x}-12 i \textit {\_R} \,{\mathrm e}^{i x}+1\right )\right )+\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}+\sqrt {2}\, {\mathrm e}^{i x}+1\right )}{12}-\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}-\sqrt {2}\, {\mathrm e}^{i x}+1\right )}{12}\) \(99\)

[In]

int(cos(x)*tan(6*x),x,method=_RETURNVERBOSE)

[Out]

-1/2*exp(I*x)-1/2*exp(-I*x)-I*sum(_R*ln(exp(2*I*x)-12*I*_R*exp(I*x)+1),_R=RootOf(20736*_Z^4+576*_Z^2+1))+1/12*
2^(1/2)*ln(exp(2*I*x)+2^(1/2)*exp(I*x)+1)-1/12*2^(1/2)*ln(exp(2*I*x)-2^(1/2)*exp(I*x)+1)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.51 \[ \int \cos (x) \tan (6 x) \, dx=\frac {1}{12} \, \sqrt {\sqrt {3} + 2} \log \left (\sqrt {\sqrt {3} + 2} + 2 \, \cos \left (x\right )\right ) - \frac {1}{12} \, \sqrt {\sqrt {3} + 2} \log \left (\sqrt {\sqrt {3} + 2} - 2 \, \cos \left (x\right )\right ) + \frac {1}{12} \, \sqrt {-\sqrt {3} + 2} \log \left (\sqrt {-\sqrt {3} + 2} + 2 \, \cos \left (x\right )\right ) - \frac {1}{12} \, \sqrt {-\sqrt {3} + 2} \log \left (\sqrt {-\sqrt {3} + 2} - 2 \, \cos \left (x\right )\right ) + \frac {1}{12} \, \sqrt {2} \log \left (-\frac {2 \, \cos \left (x\right )^{2} + 2 \, \sqrt {2} \cos \left (x\right ) + 1}{2 \, \cos \left (x\right )^{2} - 1}\right ) - \cos \left (x\right ) \]

[In]

integrate(cos(x)*tan(6*x),x, algorithm="fricas")

[Out]

1/12*sqrt(sqrt(3) + 2)*log(sqrt(sqrt(3) + 2) + 2*cos(x)) - 1/12*sqrt(sqrt(3) + 2)*log(sqrt(sqrt(3) + 2) - 2*co
s(x)) + 1/12*sqrt(-sqrt(3) + 2)*log(sqrt(-sqrt(3) + 2) + 2*cos(x)) - 1/12*sqrt(-sqrt(3) + 2)*log(sqrt(-sqrt(3)
 + 2) - 2*cos(x)) + 1/12*sqrt(2)*log(-(2*cos(x)^2 + 2*sqrt(2)*cos(x) + 1)/(2*cos(x)^2 - 1)) - cos(x)

Sympy [F]

\[ \int \cos (x) \tan (6 x) \, dx=\int \cos {\left (x \right )} \tan {\left (6 x \right )}\, dx \]

[In]

integrate(cos(x)*tan(6*x),x)

[Out]

Integral(cos(x)*tan(6*x), x)

Maxima [F]

\[ \int \cos (x) \tan (6 x) \, dx=\int { \cos \left (x\right ) \tan \left (6 \, x\right ) \,d x } \]

[In]

integrate(cos(x)*tan(6*x),x, algorithm="maxima")

[Out]

1/24*sqrt(2)*log(2*sqrt(2)*sin(2*x)*sin(x) + 2*(sqrt(2)*cos(x) + 1)*cos(2*x) + cos(2*x)^2 + 2*cos(x)^2 + sin(2
*x)^2 + 2*sin(x)^2 + 2*sqrt(2)*cos(x) + 1) - 1/24*sqrt(2)*log(-2*sqrt(2)*sin(2*x)*sin(x) - 2*(sqrt(2)*cos(x) -
 1)*cos(2*x) + cos(2*x)^2 + 2*cos(x)^2 + sin(2*x)^2 + 2*sin(x)^2 - 2*sqrt(2)*cos(x) + 1) - cos(x) - integrate(
1/3*((2*sin(7*x) + sin(5*x) - sin(3*x) - 2*sin(x))*cos(8*x) + (sin(3*x) + 2*sin(x))*cos(4*x) - (2*cos(7*x) + c
os(5*x) - cos(3*x) - 2*cos(x))*sin(8*x) - 2*(cos(4*x) - 1)*sin(7*x) - (cos(4*x) - 1)*sin(5*x) - (cos(3*x) + 2*
cos(x))*sin(4*x) + 2*cos(7*x)*sin(4*x) + cos(5*x)*sin(4*x) - sin(3*x) - 2*sin(x))/(2*(cos(4*x) - 1)*cos(8*x) -
 cos(8*x)^2 - cos(4*x)^2 - sin(8*x)^2 + 2*sin(8*x)*sin(4*x) - sin(4*x)^2 + 2*cos(4*x) - 1), x)

Giac [F]

\[ \int \cos (x) \tan (6 x) \, dx=\int { \cos \left (x\right ) \tan \left (6 \, x\right ) \,d x } \]

[In]

integrate(cos(x)*tan(6*x),x, algorithm="giac")

[Out]

integrate(cos(x)*tan(6*x), x)

Mupad [B] (verification not implemented)

Time = 29.06 (sec) , antiderivative size = 787, normalized size of antiderivative = 8.84 \[ \int \cos (x) \tan (6 x) \, dx=\text {Too large to display} \]

[In]

int(tan(6*x)*cos(x),x)

[Out]

(6^(1/2)*(atan((2^(1/2)*321030945816576i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2
 + 2176593611144037376) + (6^(1/2)*888405273481134080i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438
080*tan(x/2)^2 + 2176593611144037376) - (2^(1/2)*tan(x/2)^2*18711054724802560i)/(213254896304333030400*tan(x/2
)^4 - 129275829262795438080*tan(x/2)^2 + 2176593611144037376) + (2^(1/2)*tan(x/2)^4*10905601889064960i)/(21325
4896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 2176593611144037376) - (6^(1/2)*tan(x/2)^2*52
765833462352287744i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 217659361114403737
6) + (6^(1/2)*tan(x/2)^4*87054650497106012160i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(
x/2)^2 + 2176593611144037376)) + atan((2^(1/2)*1443325504589801788190484332544i)/(5892324042622606506545538662
40*2^(1/2)*6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2 - 34367271726987959946466862039040*2^(1/2)*6
^(1/2)*tan(x/2)^2 - 2087090309450798997834557292544) - (6^(1/2)*852047139771204346616741888000i)/(589232404262
260650654553866240*2^(1/2)*6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2 - 34367271726987959946466862
039040*2^(1/2)*6^(1/2)*tan(x/2)^2 - 2087090309450798997834557292544) - (2^(1/2)*tan(x/2)^2*8418228357130530454
3568582410240i)/(589232404262260650654553866240*2^(1/2)*6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2
 - 34367271726987959946466862039040*2^(1/2)*6^(1/2)*tan(x/2)^2 - 2087090309450798997834557292544) + (6^(1/2)*t
an(x/2)^2*48634501075236486504873424060416i)/(589232404262260650654553866240*2^(1/2)*6^(1/2) + 119129717169909
888440949339586560*tan(x/2)^2 - 34367271726987959946466862039040*2^(1/2)*6^(1/2)*tan(x/2)^2 - 2087090309450798
997834557292544)))*1i)/12 - 2/(tan(x/2)^2 + 1) - (2^(1/2)*(2*atan((2^(1/2)*2276803846003180334341033033728i)/(
18766876017666378997952094928896*tan(x/2)^2 - 3219886877884552553529320931328) - (2^(1/2)*tan(x/2)^2*132701852
93778646110081740963840i)/(18766876017666378997952094928896*tan(x/2)^2 - 3219886877884552553529320931328)) - a
tan((2^(1/2)*321030945816576i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 21765936
11144037376) + (6^(1/2)*888405273481134080i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2
)^2 + 2176593611144037376) - (2^(1/2)*tan(x/2)^2*18711054724802560i)/(213254896304333030400*tan(x/2)^4 - 12927
5829262795438080*tan(x/2)^2 + 2176593611144037376) + (2^(1/2)*tan(x/2)^4*10905601889064960i)/(2132548963043330
30400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 2176593611144037376) - (6^(1/2)*tan(x/2)^2*5276583346235
2287744i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 2176593611144037376) + (6^(1/
2)*tan(x/2)^4*87054650497106012160i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 21
76593611144037376)) + atan((2^(1/2)*1443325504589801788190484332544i)/(589232404262260650654553866240*2^(1/2)*
6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2 - 34367271726987959946466862039040*2^(1/2)*6^(1/2)*tan(
x/2)^2 - 2087090309450798997834557292544) - (6^(1/2)*852047139771204346616741888000i)/(58923240426226065065455
3866240*2^(1/2)*6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2 - 34367271726987959946466862039040*2^(1
/2)*6^(1/2)*tan(x/2)^2 - 2087090309450798997834557292544) - (2^(1/2)*tan(x/2)^2*841822835713053045435685824102
40i)/(589232404262260650654553866240*2^(1/2)*6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2 - 34367271
726987959946466862039040*2^(1/2)*6^(1/2)*tan(x/2)^2 - 2087090309450798997834557292544) + (6^(1/2)*tan(x/2)^2*4
8634501075236486504873424060416i)/(589232404262260650654553866240*2^(1/2)*6^(1/2) + 11912971716990988844094933
9586560*tan(x/2)^2 - 34367271726987959946466862039040*2^(1/2)*6^(1/2)*tan(x/2)^2 - 208709030945079899783455729
2544)))*1i)/12