\(\int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx\) [403]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 185 \[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=\frac {796 \sqrt {2+\sqrt {34}} E\left (\frac {1}{2} \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )|\frac {2}{15} \left (17-\sqrt {34}\right )\right )}{15 e}+\frac {64 \operatorname {EllipticF}\left (\frac {1}{2} \left (d+e x-\arctan \left (\frac {5}{3}\right )\right ),\frac {2}{15} \left (17-\sqrt {34}\right )\right )}{\sqrt {2+\sqrt {34}} e}-\frac {32 (5 \cos (d+e x)-3 \sin (d+e x)) \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)}}{15 e}-\frac {2 (5 \cos (d+e x)-3 \sin (d+e x)) (2+3 \cos (d+e x)+5 \sin (d+e x))^{3/2}}{5 e} \]

[Out]

-2/5*(5*cos(e*x+d)-3*sin(e*x+d))*(2+3*cos(e*x+d)+5*sin(e*x+d))^(3/2)/e-32/15*(5*cos(e*x+d)-3*sin(e*x+d))*(2+3*
cos(e*x+d)+5*sin(e*x+d))^(1/2)/e+64*(cos(1/2*d+1/2*e*x-1/2*arctan(5/3))^2)^(1/2)/cos(1/2*d+1/2*e*x-1/2*arctan(
5/3))*EllipticF(sin(1/2*d+1/2*e*x-1/2*arctan(5/3)),1/15*(510-30*34^(1/2))^(1/2))/e/(2+34^(1/2))^(1/2)+796/15*(
cos(1/2*d+1/2*e*x-1/2*arctan(5/3))^2)^(1/2)/cos(1/2*d+1/2*e*x-1/2*arctan(5/3))*EllipticE(sin(1/2*d+1/2*e*x-1/2
*arctan(5/3)),1/15*(510-30*34^(1/2))^(1/2))*(2+34^(1/2))^(1/2)/e

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {3199, 3225, 3228, 3197, 2732, 3205, 2740} \[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=\frac {64 \operatorname {EllipticF}\left (\frac {1}{2} \left (d+e x-\arctan \left (\frac {5}{3}\right )\right ),\frac {2}{15} \left (17-\sqrt {34}\right )\right )}{\sqrt {2+\sqrt {34}} e}+\frac {796 \sqrt {2+\sqrt {34}} E\left (\frac {1}{2} \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )|\frac {2}{15} \left (17-\sqrt {34}\right )\right )}{15 e}-\frac {2 (5 \cos (d+e x)-3 \sin (d+e x)) (5 \sin (d+e x)+3 \cos (d+e x)+2)^{3/2}}{5 e}-\frac {32 (5 \cos (d+e x)-3 \sin (d+e x)) \sqrt {5 \sin (d+e x)+3 \cos (d+e x)+2}}{15 e} \]

[In]

Int[(2 + 3*Cos[d + e*x] + 5*Sin[d + e*x])^(5/2),x]

[Out]

(796*Sqrt[2 + Sqrt[34]]*EllipticE[(d + e*x - ArcTan[5/3])/2, (2*(17 - Sqrt[34]))/15])/(15*e) + (64*EllipticF[(
d + e*x - ArcTan[5/3])/2, (2*(17 - Sqrt[34]))/15])/(Sqrt[2 + Sqrt[34]]*e) - (32*(5*Cos[d + e*x] - 3*Sin[d + e*
x])*Sqrt[2 + 3*Cos[d + e*x] + 5*Sin[d + e*x]])/(15*e) - (2*(5*Cos[d + e*x] - 3*Sin[d + e*x])*(2 + 3*Cos[d + e*
x] + 5*Sin[d + e*x])^(3/2))/(5*e)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3197

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Int[Sqrt[a + Sqrt
[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 + c^2, 0] && GtQ[a + Sqrt
[b^2 + c^2], 0]

Rule 3199

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(c*Cos[d
+ e*x] - b*Sin[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)/(e*n)), x] + Dist[1/n, Int[Simp[n*a^2
 + (n - 1)*(b^2 + c^2) + a*b*(2*n - 1)*Cos[d + e*x] + a*c*(2*n - 1)*Sin[d + e*x], x]*(a + b*Cos[d + e*x] + c*S
in[d + e*x])^(n - 2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && GtQ[n, 1]

Rule 3205

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Int[1/Sqrt[a +
Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 + c^2, 0] && GtQ[a +
Sqrt[b^2 + c^2], 0]

Rule 3225

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x]
)*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1))), x] + Dist[1/(a*(n + 1)), Int[(a + b*Cos[d + e*x] +
c*Sin[d + e*x])^(n - 1)*Simp[a*(b*B + c*C)*n + a^2*A*(n + 1) + (n*(a^2*B - B*c^2 + b*c*C) + a*b*A*(n + 1))*Cos
[d + e*x] + (n*(b*B*c + a^2*C - b^2*C) + a*c*A*(n + 1))*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A, B
, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0]

Rule 3228

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
 + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[B/b, Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]
, x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e
, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (5 \cos (d+e x)-3 \sin (d+e x)) (2+3 \cos (d+e x)+5 \sin (d+e x))^{3/2}}{5 e}+\frac {2}{5} \int \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)} (61+24 \cos (d+e x)+40 \sin (d+e x)) \, dx \\ & = -\frac {32 (5 \cos (d+e x)-3 \sin (d+e x)) \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)}}{15 e}-\frac {2 (5 \cos (d+e x)-3 \sin (d+e x)) (2+3 \cos (d+e x)+5 \sin (d+e x))^{3/2}}{5 e}+\frac {2}{15} \int \frac {638+597 \cos (d+e x)+995 \sin (d+e x)}{\sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)}} \, dx \\ & = -\frac {32 (5 \cos (d+e x)-3 \sin (d+e x)) \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)}}{15 e}-\frac {2 (5 \cos (d+e x)-3 \sin (d+e x)) (2+3 \cos (d+e x)+5 \sin (d+e x))^{3/2}}{5 e}+\frac {398}{15} \int \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)} \, dx+32 \int \frac {1}{\sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)}} \, dx \\ & = -\frac {32 (5 \cos (d+e x)-3 \sin (d+e x)) \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)}}{15 e}-\frac {2 (5 \cos (d+e x)-3 \sin (d+e x)) (2+3 \cos (d+e x)+5 \sin (d+e x))^{3/2}}{5 e}+\frac {398}{15} \int \sqrt {2+\sqrt {34} \cos \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )} \, dx+32 \int \frac {1}{\sqrt {2+\sqrt {34} \cos \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}} \, dx \\ & = \frac {796 \sqrt {2+\sqrt {34}} E\left (\frac {1}{2} \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )|\frac {2}{15} \left (17-\sqrt {34}\right )\right )}{15 e}+\frac {64 \operatorname {EllipticF}\left (\frac {1}{2} \left (d+e x-\arctan \left (\frac {5}{3}\right )\right ),\frac {2}{15} \left (17-\sqrt {34}\right )\right )}{\sqrt {2+\sqrt {34}} e}-\frac {32 (5 \cos (d+e x)-3 \sin (d+e x)) \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)}}{15 e}-\frac {2 (5 \cos (d+e x)-3 \sin (d+e x)) (2+3 \cos (d+e x)+5 \sin (d+e x))^{3/2}}{5 e} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 4.94 (sec) , antiderivative size = 399, normalized size of antiderivative = 2.16 \[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=\frac {-2388 \sqrt {2+\sqrt {34} \cos \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}-2 \sqrt {2+3 \cos (d+e x)+5 \sin (d+e x)} (550 \cos (d+e x)+3 (-398+75 \cos (2 (d+e x))-110 \sin (d+e x)+40 \sin (2 (d+e x))))+1276 \sqrt {\frac {10}{3}} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{2},\frac {3}{2},\frac {\sqrt {34}+17 \sin \left (d+e x+\arctan \left (\frac {3}{5}\right )\right )}{-17+\sqrt {34}},\frac {\sqrt {34}+17 \sin \left (d+e x+\arctan \left (\frac {3}{5}\right )\right )}{17+\sqrt {34}}\right ) \sqrt {\cos ^2\left (d+e x+\arctan \left (\frac {3}{5}\right )\right )} \sec \left (d+e x+\arctan \left (\frac {3}{5}\right )\right ) \sqrt {2+\sqrt {34} \sin \left (d+e x+\arctan \left (\frac {3}{5}\right )\right )}+\frac {1990 \sin \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}{\sqrt {\frac {1}{17}+\frac {\cos \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}{\sqrt {34}}}}-\frac {1990 \sqrt {30} \operatorname {AppellF1}\left (-\frac {1}{2},-\frac {1}{2},-\frac {1}{2},\frac {1}{2},\frac {\sqrt {34}+17 \cos \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}{-17+\sqrt {34}},\frac {\sqrt {34}+17 \cos \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}{17+\sqrt {34}}\right ) \csc \left (d+e x-\arctan \left (\frac {5}{3}\right )\right ) \sqrt {\sin ^2\left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}}{\sqrt {2+\sqrt {34} \cos \left (d+e x-\arctan \left (\frac {5}{3}\right )\right )}}}{75 e} \]

[In]

Integrate[(2 + 3*Cos[d + e*x] + 5*Sin[d + e*x])^(5/2),x]

[Out]

(-2388*Sqrt[2 + Sqrt[34]*Cos[d + e*x - ArcTan[5/3]]] - 2*Sqrt[2 + 3*Cos[d + e*x] + 5*Sin[d + e*x]]*(550*Cos[d
+ e*x] + 3*(-398 + 75*Cos[2*(d + e*x)] - 110*Sin[d + e*x] + 40*Sin[2*(d + e*x)])) + 1276*Sqrt[10/3]*AppellF1[1
/2, 1/2, 1/2, 3/2, (Sqrt[34] + 17*Sin[d + e*x + ArcTan[3/5]])/(-17 + Sqrt[34]), (Sqrt[34] + 17*Sin[d + e*x + A
rcTan[3/5]])/(17 + Sqrt[34])]*Sqrt[Cos[d + e*x + ArcTan[3/5]]^2]*Sec[d + e*x + ArcTan[3/5]]*Sqrt[2 + Sqrt[34]*
Sin[d + e*x + ArcTan[3/5]]] + (1990*Sin[d + e*x - ArcTan[5/3]])/Sqrt[1/17 + Cos[d + e*x - ArcTan[5/3]]/Sqrt[34
]] - (1990*Sqrt[30]*AppellF1[-1/2, -1/2, -1/2, 1/2, (Sqrt[34] + 17*Cos[d + e*x - ArcTan[5/3]])/(-17 + Sqrt[34]
), (Sqrt[34] + 17*Cos[d + e*x - ArcTan[5/3]])/(17 + Sqrt[34])]*Csc[d + e*x - ArcTan[5/3]]*Sqrt[Sin[d + e*x - A
rcTan[5/3]]^2])/Sqrt[2 + Sqrt[34]*Cos[d + e*x - ArcTan[5/3]]])/(75*e)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.04 (sec) , antiderivative size = 821, normalized size of antiderivative = 4.44

method result size
default \(\text {Expression too large to display}\) \(821\)

[In]

int((2+3*cos(e*x+d)+5*sin(e*x+d))^(5/2),x,method=_RETURNVERBOSE)

[Out]

(424/17*((17*sin(e*x+d+arctan(3/5))+34^(1/2))/(34^(1/2)+17))^(1/2)*17^(1/2)*((sin(e*x+d+arctan(3/5))+1)/(-34^(
1/2)+17))^(1/2)*(-17*(sin(e*x+d+arctan(3/5))-1)/(34^(1/2)+17))^(1/2)*EllipticF(((17*sin(e*x+d+arctan(3/5))+34^
(1/2))/(34^(1/2)+17))^(1/2),I*(1/(-34^(1/2)+17)*(34^(1/2)+17))^(1/2))*34^(1/2)+184*((17*sin(e*x+d+arctan(3/5))
+34^(1/2))/(34^(1/2)+17))^(1/2)*17^(1/2)*((sin(e*x+d+arctan(3/5))+1)/(-34^(1/2)+17))^(1/2)*(-17*(sin(e*x+d+arc
tan(3/5))-1)/(34^(1/2)+17))^(1/2)*EllipticF(((17*sin(e*x+d+arctan(3/5))+34^(1/2))/(34^(1/2)+17))^(1/2),I*(1/(-
34^(1/2)+17)*(34^(1/2)+17))^(1/2))+1904/15*sin(e*x+d+arctan(3/5))^3-1904/15*sin(e*x+d+arctan(3/5))-116/15*34^(
1/2)*sin(e*x+d+arctan(3/5))^2-88/15*34^(1/2)-240/17*34^(1/2)*((17*sin(e*x+d+arctan(3/5))+34^(1/2))/(34^(1/2)+1
7))^(1/2)*17^(1/2)*((sin(e*x+d+arctan(3/5))+1)/(-34^(1/2)+17))^(1/2)*(-17*(sin(e*x+d+arctan(3/5))-1)/(34^(1/2)
+17))^(1/2)*EllipticE(((17*sin(e*x+d+arctan(3/5))+34^(1/2))/(34^(1/2)+17))^(1/2),I*(1/(-34^(1/2)+17)*(34^(1/2)
+17))^(1/2))+1036/17*34^(1/2)*17^(1/2)*((sin(e*x+d+arctan(3/5))+1)/(-34^(1/2)+17))^(1/2)*(-17*(sin(e*x+d+arcta
n(3/5))-1)/(34^(1/2)+17))^(1/2)*(-(17*sin(e*x+d+arctan(3/5))+34^(1/2))/(-34^(1/2)+17))^(1/2)*EllipticE((-(17*s
in(e*x+d+arctan(3/5))+34^(1/2))/(-34^(1/2)+17))^(1/2),I*((-34^(1/2)+17)/(34^(1/2)+17))^(1/2))+120*(-(17*sin(e*
x+d+arctan(3/5))+34^(1/2))/(-34^(1/2)+17))^(1/2)*(-17*(sin(e*x+d+arctan(3/5))-1)/(34^(1/2)+17))^(1/2)*17^(1/2)
*((sin(e*x+d+arctan(3/5))+1)/(-34^(1/2)+17))^(1/2)*EllipticF((-(17*sin(e*x+d+arctan(3/5))+34^(1/2))/(-34^(1/2)
+17))^(1/2),I*((-34^(1/2)+17)/(34^(1/2)+17))^(1/2))-68*34^(1/2)*(-(17*sin(e*x+d+arctan(3/5))+34^(1/2))/(-34^(1
/2)+17))^(1/2)*(-17*(sin(e*x+d+arctan(3/5))-1)/(34^(1/2)+17))^(1/2)*17^(1/2)*((sin(e*x+d+arctan(3/5))+1)/(-34^
(1/2)+17))^(1/2)*EllipticF((-(17*sin(e*x+d+arctan(3/5))+34^(1/2))/(-34^(1/2)+17))^(1/2),I*((-34^(1/2)+17)/(34^
(1/2)+17))^(1/2))+68/5*34^(1/2)*sin(e*x+d+arctan(3/5))^4)/cos(e*x+d+arctan(3/5))/(34^(1/2)*sin(e*x+d+arctan(3/
5))+2)^(1/2)/e

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.97 \[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=-\frac {2 \, {\left (-\left (1677 i + 2795\right ) \, \sqrt {5 i + 3} \sqrt {2} {\rm weierstrassPInverse}\left (\frac {860}{289} i + \frac {1376}{867}, -\frac {5480}{132651} i - \frac {12056}{14739}, \cos \left (e x + d\right ) - i \, \sin \left (e x + d\right ) - \frac {10}{51} i + \frac {2}{17}\right ) + \left (1677 i - 2795\right ) \, \sqrt {-5 i + 3} \sqrt {2} {\rm weierstrassPInverse}\left (-\frac {860}{289} i + \frac {1376}{867}, \frac {5480}{132651} i - \frac {12056}{14739}, \cos \left (e x + d\right ) + i \, \sin \left (e x + d\right ) + \frac {10}{51} i + \frac {2}{17}\right ) + 10149 i \, \sqrt {5 i + 3} \sqrt {2} {\rm weierstrassZeta}\left (\frac {860}{289} i + \frac {1376}{867}, -\frac {5480}{132651} i - \frac {12056}{14739}, {\rm weierstrassPInverse}\left (\frac {860}{289} i + \frac {1376}{867}, -\frac {5480}{132651} i - \frac {12056}{14739}, \cos \left (e x + d\right ) - i \, \sin \left (e x + d\right ) - \frac {10}{51} i + \frac {2}{17}\right )\right ) - 10149 i \, \sqrt {-5 i + 3} \sqrt {2} {\rm weierstrassZeta}\left (-\frac {860}{289} i + \frac {1376}{867}, \frac {5480}{132651} i - \frac {12056}{14739}, {\rm weierstrassPInverse}\left (-\frac {860}{289} i + \frac {1376}{867}, \frac {5480}{132651} i - \frac {12056}{14739}, \cos \left (e x + d\right ) + i \, \sin \left (e x + d\right ) + \frac {10}{51} i + \frac {2}{17}\right )\right ) + 51 \, {\left (90 \, \cos \left (e x + d\right )^{2} + 6 \, {\left (8 \, \cos \left (e x + d\right ) - 11\right )} \sin \left (e x + d\right ) + 110 \, \cos \left (e x + d\right ) - 45\right )} \sqrt {3 \, \cos \left (e x + d\right ) + 5 \, \sin \left (e x + d\right ) + 2}\right )}}{765 \, e} \]

[In]

integrate((2+3*cos(e*x+d)+5*sin(e*x+d))^(5/2),x, algorithm="fricas")

[Out]

-2/765*(-(1677*I + 2795)*sqrt(5*I + 3)*sqrt(2)*weierstrassPInverse(860/289*I + 1376/867, -5480/132651*I - 1205
6/14739, cos(e*x + d) - I*sin(e*x + d) - 10/51*I + 2/17) + (1677*I - 2795)*sqrt(-5*I + 3)*sqrt(2)*weierstrassP
Inverse(-860/289*I + 1376/867, 5480/132651*I - 12056/14739, cos(e*x + d) + I*sin(e*x + d) + 10/51*I + 2/17) +
10149*I*sqrt(5*I + 3)*sqrt(2)*weierstrassZeta(860/289*I + 1376/867, -5480/132651*I - 12056/14739, weierstrassP
Inverse(860/289*I + 1376/867, -5480/132651*I - 12056/14739, cos(e*x + d) - I*sin(e*x + d) - 10/51*I + 2/17)) -
 10149*I*sqrt(-5*I + 3)*sqrt(2)*weierstrassZeta(-860/289*I + 1376/867, 5480/132651*I - 12056/14739, weierstras
sPInverse(-860/289*I + 1376/867, 5480/132651*I - 12056/14739, cos(e*x + d) + I*sin(e*x + d) + 10/51*I + 2/17))
 + 51*(90*cos(e*x + d)^2 + 6*(8*cos(e*x + d) - 11)*sin(e*x + d) + 110*cos(e*x + d) - 45)*sqrt(3*cos(e*x + d) +
 5*sin(e*x + d) + 2))/e

Sympy [F(-1)]

Timed out. \[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate((2+3*cos(e*x+d)+5*sin(e*x+d))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=\int { {\left (3 \, \cos \left (e x + d\right ) + 5 \, \sin \left (e x + d\right ) + 2\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((2+3*cos(e*x+d)+5*sin(e*x+d))^(5/2),x, algorithm="maxima")

[Out]

integrate((3*cos(e*x + d) + 5*sin(e*x + d) + 2)^(5/2), x)

Giac [F]

\[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=\int { {\left (3 \, \cos \left (e x + d\right ) + 5 \, \sin \left (e x + d\right ) + 2\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((2+3*cos(e*x+d)+5*sin(e*x+d))^(5/2),x, algorithm="giac")

[Out]

integrate((3*cos(e*x + d) + 5*sin(e*x + d) + 2)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int (2+3 \cos (d+e x)+5 \sin (d+e x))^{5/2} \, dx=\int {\left (3\,\cos \left (d+e\,x\right )+5\,\sin \left (d+e\,x\right )+2\right )}^{5/2} \,d x \]

[In]

int((3*cos(d + e*x) + 5*sin(d + e*x) + 2)^(5/2),x)

[Out]

int((3*cos(d + e*x) + 5*sin(d + e*x) + 2)^(5/2), x)