\(\int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx\) [410]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 347 \[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=-\frac {16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac {2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac {2 \left (23 a^2+9 \left (b^2+c^2\right )\right ) E\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right ) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}}}-\frac {16 a \left (a^2-b^2-c^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(b,c)\right ),\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right ) \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}}}{15 e \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}} \]

[Out]

-2/5*(c*cos(e*x+d)-b*sin(e*x+d))*(a+b*cos(e*x+d)+c*sin(e*x+d))^(3/2)/e-16/15*(a*c*cos(e*x+d)-a*b*sin(e*x+d))*(
a+b*cos(e*x+d)+c*sin(e*x+d))^(1/2)/e+2/15*(23*a^2+9*b^2+9*c^2)*(cos(1/2*d+1/2*e*x-1/2*arctan(b,c))^2)^(1/2)/co
s(1/2*d+1/2*e*x-1/2*arctan(b,c))*EllipticE(sin(1/2*d+1/2*e*x-1/2*arctan(b,c)),2^(1/2)*((b^2+c^2)^(1/2)/(a+(b^2
+c^2)^(1/2)))^(1/2))*(a+b*cos(e*x+d)+c*sin(e*x+d))^(1/2)/e/((a+b*cos(e*x+d)+c*sin(e*x+d))/(a+(b^2+c^2)^(1/2)))
^(1/2)-16/15*a*(a^2-b^2-c^2)*(cos(1/2*d+1/2*e*x-1/2*arctan(b,c))^2)^(1/2)/cos(1/2*d+1/2*e*x-1/2*arctan(b,c))*E
llipticF(sin(1/2*d+1/2*e*x-1/2*arctan(b,c)),2^(1/2)*((b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2))*((a+b*cos(e*x
+d)+c*sin(e*x+d))/(a+(b^2+c^2)^(1/2)))^(1/2)/e/(a+b*cos(e*x+d)+c*sin(e*x+d))^(1/2)

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {3199, 3225, 3228, 3198, 2732, 3206, 2740} \[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=-\frac {16 a \left (a^2-b^2-c^2\right ) \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}} \operatorname {EllipticF}\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(b,c)\right ),\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right )}{15 e \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}+\frac {2 \left (23 a^2+9 \left (b^2+c^2\right )\right ) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right )}{15 e \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}}}-\frac {2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}-\frac {16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e} \]

[In]

Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(5/2),x]

[Out]

(-16*(a*c*Cos[d + e*x] - a*b*Sin[d + e*x])*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(15*e) - (2*(c*Cos[d + e
*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2))/(5*e) + (2*(23*a^2 + 9*(b^2 + c^2))*Ellipti
cE[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x] + c*Sin[d +
e*x]])/(15*e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]) - (16*a*(a^2 - b^2 - c^2)*Elli
pticF[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[d + e*x] + c*Sin[
d + e*x])/(a + Sqrt[b^2 + c^2])])/(15*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3198

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])], Int[Sqrt[a/(a
 + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2]))*Cos[d + e*x - ArcTan[b, c]]], x], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 3199

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(c*Cos[d
+ e*x] - b*Sin[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)/(e*n)), x] + Dist[1/n, Int[Simp[n*a^2
 + (n - 1)*(b^2 + c^2) + a*b*(2*n - 1)*Cos[d + e*x] + a*c*(2*n - 1)*Sin[d + e*x], x]*(a + b*Cos[d + e*x] + c*S
in[d + e*x])^(n - 2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && GtQ[n, 1]

Rule 3206

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a +
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], Int[1/Sqrt[
a/(a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2]))*Cos[d + e*x - ArcTan[b, c]]], x], x] /; Free
Q[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 3225

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x]
)*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1))), x] + Dist[1/(a*(n + 1)), Int[(a + b*Cos[d + e*x] +
c*Sin[d + e*x])^(n - 1)*Simp[a*(b*B + c*C)*n + a^2*A*(n + 1) + (n*(a^2*B - B*c^2 + b*c*C) + a*b*A*(n + 1))*Cos
[d + e*x] + (n*(b*B*c + a^2*C - b^2*C) + a*c*A*(n + 1))*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A, B
, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0]

Rule 3228

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
 + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[B/b, Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]
, x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e
, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac {2}{5} \int \sqrt {a+b \cos (d+e x)+c \sin (d+e x)} \left (\frac {1}{2} \left (5 a^2+3 \left (b^2+c^2\right )\right )+4 a b \cos (d+e x)+4 a c \sin (d+e x)\right ) \, dx \\ & = -\frac {16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac {2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac {4 \int \frac {\frac {1}{4} a^2 \left (15 a^2+17 \left (b^2+c^2\right )\right )+\frac {1}{4} a b \left (23 a^2+9 \left (b^2+c^2\right )\right ) \cos (d+e x)+\frac {1}{4} a c \left (23 a^2+9 \left (b^2+c^2\right )\right ) \sin (d+e x)}{\sqrt {a+b \cos (d+e x)+c \sin (d+e x)}} \, dx}{15 a} \\ & = -\frac {16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac {2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}-\frac {1}{15} \left (8 a \left (a^2-b^2-c^2\right )\right ) \int \frac {1}{\sqrt {a+b \cos (d+e x)+c \sin (d+e x)}} \, dx+\frac {1}{15} \left (23 a^2+9 \left (b^2+c^2\right )\right ) \int \sqrt {a+b \cos (d+e x)+c \sin (d+e x)} \, dx \\ & = -\frac {16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac {2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac {\left (\left (23 a^2+9 \left (b^2+c^2\right )\right ) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}\right ) \int \sqrt {\frac {a}{a+\sqrt {b^2+c^2}}+\frac {\sqrt {b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt {b^2+c^2}}} \, dx}{15 \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}}}-\frac {\left (8 a \left (a^2-b^2-c^2\right ) \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+\sqrt {b^2+c^2}}+\frac {\sqrt {b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt {b^2+c^2}}}} \, dx}{15 \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}} \\ & = -\frac {16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac {2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac {2 \left (23 a^2+9 \left (b^2+c^2\right )\right ) E\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right ) \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}}{15 e \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}}}-\frac {16 a \left (a^2-b^2-c^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (d+e x-\tan ^{-1}(b,c)\right ),\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right ) \sqrt {\frac {a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt {b^2+c^2}}}}{15 e \sqrt {a+b \cos (d+e x)+c \sin (d+e x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.76 (sec) , antiderivative size = 3767, normalized size of antiderivative = 10.86 \[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=\text {Result too large to show} \]

[In]

Integrate[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(5/2),x]

[Out]

(Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]*((2*b*(23*a^2 + 9*b^2 + 9*c^2))/(15*c) - (22*a*c*Cos[d + e*x])/15 -
 (2*b*c*Cos[2*(d + e*x)])/5 + (22*a*b*Sin[d + e*x])/15 + ((b^2 - c^2)*Sin[2*(d + e*x)])/5))/e + (2*a^3*AppellF
1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1
 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1
 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d
+ e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c
]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^
2)/c^2])])/(Sqrt[1 + b^2/c^2]*c*e) + (34*a*b^2*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d +
 e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d +
e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*
Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqr
t[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c
^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(15*Sqrt[1 + b^2/c^2]*c*e) + (34*a*c*AppellF1
[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1
+ b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1
+ b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d +
 e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]
]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2
)/c^2])])/(15*Sqrt[1 + b^2/c^2]*e) + (23*a^2*b^2*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b
^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^
2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b
]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(
a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 +
 c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a
+ b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^
2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(15*c*e) + (3*b^4*(-((c*AppellF1[-1/2, -1/
2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c
^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c
^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^
2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*
x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*
Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d
 + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(5*c*
e) + (23*a^2*c*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b
*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*
Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*S
qrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt
[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^
2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x
- ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b
^2]*Cos[d + e*x - ArcTan[c/b]]]))/(15*e) + (6*b^2*c*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^
2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2
/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[
c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]
)/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^
2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*
(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 +
 c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(5*e) + (3*c^3*(-((c*AppellF1[-1/2, -1/
2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c
^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c
^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^
2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*
x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*
Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d
 + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(5*e)

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2269\) vs. \(2(394)=788\).

Time = 3.02 (sec) , antiderivative size = 2270, normalized size of antiderivative = 6.54

method result size
default \(\text {Expression too large to display}\) \(2270\)

[In]

int((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x,method=_RETURNVERBOSE)

[Out]

(-(-b^2*sin(e*x+d-arctan(-b,c))-c^2*sin(e*x+d-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(e*x+d-arctan(-b,c))^2/(b^2+
c^2)^(1/2))^(1/2)*(2*a^3*(1/(b^2+c^2)^(1/2)*a+1)*(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/
2)))^(1/2)*((sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))
+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)/(-(-b^2*sin(e*x+d-arctan(-b,c))-c^2*sin(e*x+d-arctan(-b,c))-a*(
b^2+c^2)^(1/2))*cos(e*x+d-arctan(-b,c))^2/(b^2+c^2)^(1/2))^(1/2)*EllipticF((((b^2+c^2)^(1/2)*sin(e*x+d-arctan(
-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/(-a+(b^2+c^2)^(1/2)))^(1/2))+(b^2+c^2)^(3/2)*(-2/5/
(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))*(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)*cos(e*x+d-arctan(-b,c))^2
)^(1/2)+8/15/(b^2+c^2)*a*(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)*cos(e*x+d-arctan(-b,c))^2)^(1/2)+4/15/(b
^2+c^2)^(1/2)*a*(1/(b^2+c^2)^(1/2)*a+1)*(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2
)*((sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+
c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)/(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)*cos(e*x+d-arctan(-b,c))^2)^
(1/2)*EllipticF((((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/
(-a+(b^2+c^2)^(1/2)))^(1/2))+2*(3/5+8/15/(b^2+c^2)*a^2)*(1/(b^2+c^2)^(1/2)*a+1)*(((b^2+c^2)^(1/2)*sin(e*x+d-ar
ctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2)*((sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(
1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)/(((b^2+c^2)^(1/2)*sin(e*x+d-arct
an(-b,c))+a)*cos(e*x+d-arctan(-b,c))^2)^(1/2)*((-1/(b^2+c^2)^(1/2)*a+1)*EllipticE((((b^2+c^2)^(1/2)*sin(e*x+d-
arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/(-a+(b^2+c^2)^(1/2)))^(1/2))-EllipticF((((b^
2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/(-a+(b^2+c^2)^(1/2)))
^(1/2))))+(3*a*b^2+3*a*c^2)*(-2/3/(b^2+c^2)^(1/2)*(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)*cos(e*x+d-arcta
n(-b,c))^2)^(1/2)+2/3*(1/(b^2+c^2)^(1/2)*a+1)*(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2))
)^(1/2)*((sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)
*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)/(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)*cos(e*x+d-arctan(-b,c
))^2)^(1/2)*EllipticF((((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(
1/2))/(-a+(b^2+c^2)^(1/2)))^(1/2))-4/3/(b^2+c^2)^(1/2)*a*(1/(b^2+c^2)^(1/2)*a+1)*(((b^2+c^2)^(1/2)*sin(e*x+d-a
rctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2)*((sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^
(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)/(((b^2+c^2)^(1/2)*sin(e*x+d-arc
tan(-b,c))+a)*cos(e*x+d-arctan(-b,c))^2)^(1/2)*((-1/(b^2+c^2)^(1/2)*a+1)*EllipticE((((b^2+c^2)^(1/2)*sin(e*x+d
-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/(-a+(b^2+c^2)^(1/2)))^(1/2))-EllipticF((((b
^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/(-a+(b^2+c^2)^(1/2))
)^(1/2))))+6*a^2*(b^2+c^2)^(1/2)*(1/(b^2+c^2)^(1/2)*a+1)*(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^2+
c^2)^(1/2)))^(1/2)*((sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arcta
n(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)/(((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)*cos(e*x+d-
arctan(-b,c))^2)^(1/2)*((-1/(b^2+c^2)^(1/2)*a+1)*EllipticE((((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(a+(b^
2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/(-a+(b^2+c^2)^(1/2)))^(1/2))-EllipticF((((b^2+c^2)^(1/2)*sin(e*x+d-
arctan(-b,c))+a)/(a+(b^2+c^2)^(1/2)))^(1/2),((-a-(b^2+c^2)^(1/2))/(-a+(b^2+c^2)^(1/2)))^(1/2))))/cos(e*x+d-arc
tan(-b,c))/((b^2*sin(e*x+d-arctan(-b,c))+c^2*sin(e*x+d-arctan(-b,c))+a*(b^2+c^2)^(1/2))/(b^2+c^2)^(1/2))^(1/2)
/e

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 1595, normalized size of antiderivative = 4.60 \[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=\text {Too large to display} \]

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="fricas")

[Out]

1/45*(sqrt(2)*(-I*a^3*b + 33*I*a*b^3 + 33*I*a*b*c^2 + 33*a*c^3 - (a^3 - 33*a*b^2)*c)*sqrt(b + I*c)*weierstrass
PInverse(4/3*(4*a^2*b^2 - 3*b^4 - 4*a^2*c^2 + 6*I*b*c^3 + 3*c^4 - 2*I*(4*a^2*b - 3*b^3)*c)/(b^4 + 2*b^2*c^2 +
c^4), -8/27*(8*a^3*b^3 - 9*a*b^5 + 27*a*b*c^4 - 9*I*a*c^5 + 2*I*(4*a^3 + 9*a*b^2)*c^3 - 6*(4*a^3*b - 3*a*b^3)*
c^2 - 3*I*(8*a^3*b^2 - 9*a*b^4)*c)/(b^6 + 3*b^4*c^2 + 3*b^2*c^4 + c^6), 1/3*(2*a*b - 2*I*a*c + 3*(b^2 + c^2)*c
os(e*x + d) - 3*(I*b^2 + I*c^2)*sin(e*x + d))/(b^2 + c^2)) + sqrt(2)*(I*a^3*b - 33*I*a*b^3 - 33*I*a*b*c^2 + 33
*a*c^3 - (a^3 - 33*a*b^2)*c)*sqrt(b - I*c)*weierstrassPInverse(4/3*(4*a^2*b^2 - 3*b^4 - 4*a^2*c^2 - 6*I*b*c^3
+ 3*c^4 + 2*I*(4*a^2*b - 3*b^3)*c)/(b^4 + 2*b^2*c^2 + c^4), -8/27*(8*a^3*b^3 - 9*a*b^5 + 27*a*b*c^4 + 9*I*a*c^
5 - 2*I*(4*a^3 + 9*a*b^2)*c^3 - 6*(4*a^3*b - 3*a*b^3)*c^2 + 3*I*(8*a^3*b^2 - 9*a*b^4)*c)/(b^6 + 3*b^4*c^2 + 3*
b^2*c^4 + c^6), 1/3*(2*a*b + 2*I*a*c + 3*(b^2 + c^2)*cos(e*x + d) - 3*(-I*b^2 - I*c^2)*sin(e*x + d))/(b^2 + c^
2)) - 3*sqrt(2)*(23*I*a^2*b^2 + 9*I*b^4 + 9*I*c^4 + I*(23*a^2 + 18*b^2)*c^2)*sqrt(b + I*c)*weierstrassZeta(4/3
*(4*a^2*b^2 - 3*b^4 - 4*a^2*c^2 + 6*I*b*c^3 + 3*c^4 - 2*I*(4*a^2*b - 3*b^3)*c)/(b^4 + 2*b^2*c^2 + c^4), -8/27*
(8*a^3*b^3 - 9*a*b^5 + 27*a*b*c^4 - 9*I*a*c^5 + 2*I*(4*a^3 + 9*a*b^2)*c^3 - 6*(4*a^3*b - 3*a*b^3)*c^2 - 3*I*(8
*a^3*b^2 - 9*a*b^4)*c)/(b^6 + 3*b^4*c^2 + 3*b^2*c^4 + c^6), weierstrassPInverse(4/3*(4*a^2*b^2 - 3*b^4 - 4*a^2
*c^2 + 6*I*b*c^3 + 3*c^4 - 2*I*(4*a^2*b - 3*b^3)*c)/(b^4 + 2*b^2*c^2 + c^4), -8/27*(8*a^3*b^3 - 9*a*b^5 + 27*a
*b*c^4 - 9*I*a*c^5 + 2*I*(4*a^3 + 9*a*b^2)*c^3 - 6*(4*a^3*b - 3*a*b^3)*c^2 - 3*I*(8*a^3*b^2 - 9*a*b^4)*c)/(b^6
 + 3*b^4*c^2 + 3*b^2*c^4 + c^6), 1/3*(2*a*b - 2*I*a*c + 3*(b^2 + c^2)*cos(e*x + d) - 3*(I*b^2 + I*c^2)*sin(e*x
 + d))/(b^2 + c^2))) - 3*sqrt(2)*(-23*I*a^2*b^2 - 9*I*b^4 - 9*I*c^4 - I*(23*a^2 + 18*b^2)*c^2)*sqrt(b - I*c)*w
eierstrassZeta(4/3*(4*a^2*b^2 - 3*b^4 - 4*a^2*c^2 - 6*I*b*c^3 + 3*c^4 + 2*I*(4*a^2*b - 3*b^3)*c)/(b^4 + 2*b^2*
c^2 + c^4), -8/27*(8*a^3*b^3 - 9*a*b^5 + 27*a*b*c^4 + 9*I*a*c^5 - 2*I*(4*a^3 + 9*a*b^2)*c^3 - 6*(4*a^3*b - 3*a
*b^3)*c^2 + 3*I*(8*a^3*b^2 - 9*a*b^4)*c)/(b^6 + 3*b^4*c^2 + 3*b^2*c^4 + c^6), weierstrassPInverse(4/3*(4*a^2*b
^2 - 3*b^4 - 4*a^2*c^2 - 6*I*b*c^3 + 3*c^4 + 2*I*(4*a^2*b - 3*b^3)*c)/(b^4 + 2*b^2*c^2 + c^4), -8/27*(8*a^3*b^
3 - 9*a*b^5 + 27*a*b*c^4 + 9*I*a*c^5 - 2*I*(4*a^3 + 9*a*b^2)*c^3 - 6*(4*a^3*b - 3*a*b^3)*c^2 + 3*I*(8*a^3*b^2
- 9*a*b^4)*c)/(b^6 + 3*b^4*c^2 + 3*b^2*c^4 + c^6), 1/3*(2*a*b + 2*I*a*c + 3*(b^2 + c^2)*cos(e*x + d) - 3*(-I*b
^2 - I*c^2)*sin(e*x + d))/(b^2 + c^2))) + 6*(3*b^3*c + 3*b*c^3 - 6*(b^3*c + b*c^3)*cos(e*x + d)^2 - 11*(a*b^2*
c + a*c^3)*cos(e*x + d) + (11*a*b^3 + 11*a*b*c^2 + 3*(b^4 - c^4)*cos(e*x + d))*sin(e*x + d))*sqrt(b*cos(e*x +
d) + c*sin(e*x + d) + a))/((b^2 + c^2)*e)

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=\int { {\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*cos(e*x + d) + c*sin(e*x + d) + a)^(5/2), x)

Giac [F]

\[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=\int { {\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="giac")

[Out]

integrate((b*cos(e*x + d) + c*sin(e*x + d) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx=\int {\left (a+b\,\cos \left (d+e\,x\right )+c\,\sin \left (d+e\,x\right )\right )}^{5/2} \,d x \]

[In]

int((a + b*cos(d + e*x) + c*sin(d + e*x))^(5/2),x)

[Out]

int((a + b*cos(d + e*x) + c*sin(d + e*x))^(5/2), x)