\(\int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx\) [428]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 96 \[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=\frac {\arctan \left (\frac {\sin \left (d+e x-\arctan \left (\frac {3}{4}\right )\right )}{\sqrt {2} \sqrt {-1+\cos \left (d+e x-\arctan \left (\frac {3}{4}\right )\right )}}\right )}{10 \sqrt {10} e}+\frac {3 \cos (d+e x)-4 \sin (d+e x)}{10 e (-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \]

[Out]

1/10*(3*cos(e*x+d)-4*sin(e*x+d))/e/(-5+4*cos(e*x+d)+3*sin(e*x+d))^(3/2)+1/100*arctan(1/2*sin(d+e*x-arctan(3/4)
)*2^(1/2)/(-1+cos(d+e*x-arctan(3/4)))^(1/2))*10^(1/2)/e

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3195, 3194, 2728, 210} \[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=\frac {\arctan \left (\frac {\sin \left (-\arctan \left (\frac {3}{4}\right )+d+e x\right )}{\sqrt {2} \sqrt {\cos \left (-\arctan \left (\frac {3}{4}\right )+d+e x\right )-1}}\right )}{10 \sqrt {10} e}+\frac {3 \cos (d+e x)-4 \sin (d+e x)}{10 e (3 \sin (d+e x)+4 \cos (d+e x)-5)^{3/2}} \]

[In]

Int[(-5 + 4*Cos[d + e*x] + 3*Sin[d + e*x])^(-3/2),x]

[Out]

ArcTan[Sin[d + e*x - ArcTan[3/4]]/(Sqrt[2]*Sqrt[-1 + Cos[d + e*x - ArcTan[3/4]]])]/(10*Sqrt[10]*e) + (3*Cos[d
+ e*x] - 4*Sin[d + e*x])/(10*e*(-5 + 4*Cos[d + e*x] + 3*Sin[d + e*x])^(3/2))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3194

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Int[1/Sqrt[a +
Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0]

Rule 3195

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[(c*Cos[d +
e*x] - b*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n +
1)), Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 -
 c^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {3 \cos (d+e x)-4 \sin (d+e x)}{10 e (-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}}-\frac {1}{20} \int \frac {1}{\sqrt {-5+4 \cos (d+e x)+3 \sin (d+e x)}} \, dx \\ & = \frac {3 \cos (d+e x)-4 \sin (d+e x)}{10 e (-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}}-\frac {1}{20} \int \frac {1}{\sqrt {-5+5 \cos \left (d+e x-\arctan \left (\frac {3}{4}\right )\right )}} \, dx \\ & = \frac {3 \cos (d+e x)-4 \sin (d+e x)}{10 e (-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}}+\frac {\text {Subst}\left (\int \frac {1}{-10-x^2} \, dx,x,-\frac {5 \sin \left (d+e x-\arctan \left (\frac {3}{4}\right )\right )}{\sqrt {-5+5 \cos \left (d+e x-\arctan \left (\frac {3}{4}\right )\right )}}\right )}{10 e} \\ & = \frac {\arctan \left (\frac {\sin \left (d+e x-\arctan \left (\frac {3}{4}\right )\right )}{\sqrt {2} \sqrt {-1+\cos \left (d+e x-\arctan \left (\frac {3}{4}\right )\right )}}\right )}{10 \sqrt {10} e}+\frac {3 \cos (d+e x)-4 \sin (d+e x)}{10 e (-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.58 \[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=\frac {\left (\frac {1}{250}-\frac {i}{125}\right ) \left (\cos \left (\frac {1}{2} (d+e x)\right )-3 \sin \left (\frac {1}{2} (d+e x)\right )\right ) \left ((-1+i) \sqrt {-20-15 i} \text {arctanh}\left (\left (\frac {1}{10}+\frac {3 i}{10}\right ) \sqrt {-\frac {4}{5}-\frac {3 i}{5}} \left (3+\tan \left (\frac {1}{4} (d+e x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (d+e x)\right )-3 \sin \left (\frac {1}{2} (d+e x)\right )\right )^2+(5+10 i) \left (3 \cos \left (\frac {1}{2} (d+e x)\right )+\sin \left (\frac {1}{2} (d+e x)\right )\right )\right )}{e (-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \]

[In]

Integrate[(-5 + 4*Cos[d + e*x] + 3*Sin[d + e*x])^(-3/2),x]

[Out]

((1/250 - I/125)*(Cos[(d + e*x)/2] - 3*Sin[(d + e*x)/2])*((-1 + I)*Sqrt[-20 - 15*I]*ArcTanh[(1/10 + (3*I)/10)*
Sqrt[-4/5 - (3*I)/5]*(3 + Tan[(d + e*x)/4])]*(Cos[(d + e*x)/2] - 3*Sin[(d + e*x)/2])^2 + (5 + 10*I)*(3*Cos[(d
+ e*x)/2] + Sin[(d + e*x)/2])))/(e*(-5 + 4*Cos[d + e*x] + 3*Sin[d + e*x])^(3/2))

Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.23

method result size
default \(\frac {\left (-\sqrt {10}\, \arctan \left (\frac {\sqrt {-5 \sin \left (e x +d +\arctan \left (\frac {4}{3}\right )\right )-5}\, \sqrt {10}}{10}\right ) \sin \left (e x +d +\arctan \left (\frac {4}{3}\right )\right )+\sqrt {10}\, \arctan \left (\frac {\sqrt {-5 \sin \left (e x +d +\arctan \left (\frac {4}{3}\right )\right )-5}\, \sqrt {10}}{10}\right )+2 \sqrt {-5 \sin \left (e x +d +\arctan \left (\frac {4}{3}\right )\right )-5}\right ) \sqrt {-5 \sin \left (e x +d +\arctan \left (\frac {4}{3}\right )\right )-5}}{100 \cos \left (e x +d +\arctan \left (\frac {4}{3}\right )\right ) \sqrt {-5+5 \sin \left (e x +d +\arctan \left (\frac {4}{3}\right )\right )}\, e}\) \(118\)

[In]

int(1/(-5+4*cos(e*x+d)+3*sin(e*x+d))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/100*(-10^(1/2)*arctan(1/10*(-5*sin(e*x+d+arctan(4/3))-5)^(1/2)*10^(1/2))*sin(e*x+d+arctan(4/3))+10^(1/2)*arc
tan(1/10*(-5*sin(e*x+d+arctan(4/3))-5)^(1/2)*10^(1/2))+2*(-5*sin(e*x+d+arctan(4/3))-5)^(1/2))*(-5*sin(e*x+d+ar
ctan(4/3))-5)^(1/2)/cos(e*x+d+arctan(4/3))/(-5+5*sin(e*x+d+arctan(4/3)))^(1/2)/e

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 210 vs. \(2 (81) = 162\).

Time = 0.26 (sec) , antiderivative size = 210, normalized size of antiderivative = 2.19 \[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=-\frac {{\left (13 \, \sqrt {10} \cos \left (e x + d\right )^{2} - 9 \, {\left (\sqrt {10} \cos \left (e x + d\right ) - 2 \, \sqrt {10}\right )} \sin \left (e x + d\right ) - \sqrt {10} \cos \left (e x + d\right ) - 14 \, \sqrt {10}\right )} \arctan \left (-\frac {{\left (3 \, \sqrt {10} \cos \left (e x + d\right ) + \sqrt {10} \sin \left (e x + d\right ) + 3 \, \sqrt {10}\right )} \sqrt {4 \, \cos \left (e x + d\right ) + 3 \, \sin \left (e x + d\right ) - 5}}{10 \, {\left (\cos \left (e x + d\right ) - 3 \, \sin \left (e x + d\right ) + 1\right )}}\right ) + 10 \, \sqrt {4 \, \cos \left (e x + d\right ) + 3 \, \sin \left (e x + d\right ) - 5} {\left (3 \, \cos \left (e x + d\right ) + \sin \left (e x + d\right ) + 3\right )}}{100 \, {\left (13 \, e \cos \left (e x + d\right )^{2} - e \cos \left (e x + d\right ) - 9 \, {\left (e \cos \left (e x + d\right ) - 2 \, e\right )} \sin \left (e x + d\right ) - 14 \, e\right )}} \]

[In]

integrate(1/(-5+4*cos(e*x+d)+3*sin(e*x+d))^(3/2),x, algorithm="fricas")

[Out]

-1/100*((13*sqrt(10)*cos(e*x + d)^2 - 9*(sqrt(10)*cos(e*x + d) - 2*sqrt(10))*sin(e*x + d) - sqrt(10)*cos(e*x +
 d) - 14*sqrt(10))*arctan(-1/10*(3*sqrt(10)*cos(e*x + d) + sqrt(10)*sin(e*x + d) + 3*sqrt(10))*sqrt(4*cos(e*x
+ d) + 3*sin(e*x + d) - 5)/(cos(e*x + d) - 3*sin(e*x + d) + 1)) + 10*sqrt(4*cos(e*x + d) + 3*sin(e*x + d) - 5)
*(3*cos(e*x + d) + sin(e*x + d) + 3))/(13*e*cos(e*x + d)^2 - e*cos(e*x + d) - 9*(e*cos(e*x + d) - 2*e)*sin(e*x
 + d) - 14*e)

Sympy [F]

\[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=\int \frac {1}{\left (3 \sin {\left (d + e x \right )} + 4 \cos {\left (d + e x \right )} - 5\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/(-5+4*cos(e*x+d)+3*sin(e*x+d))**(3/2),x)

[Out]

Integral((3*sin(d + e*x) + 4*cos(d + e*x) - 5)**(-3/2), x)

Maxima [F]

\[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=\int { \frac {1}{{\left (4 \, \cos \left (e x + d\right ) + 3 \, \sin \left (e x + d\right ) - 5\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(-5+4*cos(e*x+d)+3*sin(e*x+d))^(3/2),x, algorithm="maxima")

[Out]

integrate((4*cos(e*x + d) + 3*sin(e*x + d) - 5)^(-3/2), x)

Giac [F]

\[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=\int { \frac {1}{{\left (4 \, \cos \left (e x + d\right ) + 3 \, \sin \left (e x + d\right ) - 5\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(-5+4*cos(e*x+d)+3*sin(e*x+d))^(3/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{3/2}} \, dx=\int \frac {1}{{\left (4\,\cos \left (d+e\,x\right )+3\,\sin \left (d+e\,x\right )-5\right )}^{3/2}} \,d x \]

[In]

int(1/(4*cos(d + e*x) + 3*sin(d + e*x) - 5)^(3/2),x)

[Out]

int(1/(4*cos(d + e*x) + 3*sin(d + e*x) - 5)^(3/2), x)