\(\int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx\) [542]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 200 \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=\frac {\left (2 a^2 A+A \left (b^2+c^2\right )-3 a c C\right ) \arctan \left (\frac {c+(a-b) \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2-c^2}}\right )}{\left (a^2-b^2-c^2\right )^{5/2}}-\frac {b C-(A c-a C) \cos (x)+A b \sin (x)}{2 \left (a^2-b^2-c^2\right ) (a+b \cos (x)+c \sin (x))^2}-\frac {a b C-\left (3 a A c-a^2 C-2 c^2 C\right ) \cos (x)+b (3 a A-2 c C) \sin (x)}{2 \left (a^2-b^2-c^2\right )^2 (a+b \cos (x)+c \sin (x))} \]

[Out]

(2*a^2*A+A*(b^2+c^2)-3*a*c*C)*arctan((c+(a-b)*tan(1/2*x))/(a^2-b^2-c^2)^(1/2))/(a^2-b^2-c^2)^(5/2)+1/2*(-b*C+(
A*c-C*a)*cos(x)-A*b*sin(x))/(a^2-b^2-c^2)/(a+b*cos(x)+c*sin(x))^2+1/2*(-a*b*C+(3*A*a*c-C*a^2-2*C*c^2)*cos(x)-b
*(3*A*a-2*C*c)*sin(x))/(a^2-b^2-c^2)^2/(a+b*cos(x)+c*sin(x))

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3236, 3232, 3203, 632, 210} \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=\frac {\left (2 a^2 A-3 a c C+A \left (b^2+c^2\right )\right ) \arctan \left (\frac {(a-b) \tan \left (\frac {x}{2}\right )+c}{\sqrt {a^2-b^2-c^2}}\right )}{\left (a^2-b^2-c^2\right )^{5/2}}-\frac {-\cos (x) \left (a^2 (-C)+3 a A c-2 c^2 C\right )+b \sin (x) (3 a A-2 c C)+a b C}{2 \left (a^2-b^2-c^2\right )^2 (a+b \cos (x)+c \sin (x))}-\frac {-\cos (x) (A c-a C)+A b \sin (x)+b C}{2 \left (a^2-b^2-c^2\right ) (a+b \cos (x)+c \sin (x))^2} \]

[In]

Int[(A + C*Sin[x])/(a + b*Cos[x] + c*Sin[x])^3,x]

[Out]

((2*a^2*A + A*(b^2 + c^2) - 3*a*c*C)*ArcTan[(c + (a - b)*Tan[x/2])/Sqrt[a^2 - b^2 - c^2]])/(a^2 - b^2 - c^2)^(
5/2) - (b*C - (A*c - a*C)*Cos[x] + A*b*Sin[x])/(2*(a^2 - b^2 - c^2)*(a + b*Cos[x] + c*Sin[x])^2) - (a*b*C - (3
*a*A*c - a^2*C - 2*c^2*C)*Cos[x] + b*(3*a*A - 2*c*C)*Sin[x])/(2*(a^2 - b^2 - c^2)^2*(a + b*Cos[x] + c*Sin[x]))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 3203

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2], x]}, Dist[2*(f/e), Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d +
e*x)/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]

Rule 3232

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^2, x_Symbol] :> Simp[(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)
*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])), x] + Dist[(a*A - b*B - c*C)/(a^2 -
 b^2 - c^2), Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[
a^2 - b^2 - c^2, 0] && NeQ[a*A - b*B - c*C, 0]

Rule 3236

Int[((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(d_.) + (e
_.)*(x_)]), x_Symbol] :> Simp[(b*C + (a*C - c*A)*Cos[d + e*x] + b*A*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin
[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2))), x] + Dist[1/((n + 1)*(a^2 - b^2 - c^2)), Int[(a + b*Cos[d +
 e*x] + c*Sin[d + e*x])^(n + 1)*Simp[(n + 1)*(a*A - c*C) - (n + 2)*b*A*Cos[d + e*x] + (n + 2)*(a*C - c*A)*Sin[
d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A, C}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2]

Rubi steps \begin{align*} \text {integral}& = -\frac {b C-(A c-a C) \cos (x)+A b \sin (x)}{2 \left (a^2-b^2-c^2\right ) (a+b \cos (x)+c \sin (x))^2}-\frac {\int \frac {-2 (a A-c C)+A b \cos (x)+(A c-a C) \sin (x)}{(a+b \cos (x)+c \sin (x))^2} \, dx}{2 \left (a^2-b^2-c^2\right )} \\ & = -\frac {b C-(A c-a C) \cos (x)+A b \sin (x)}{2 \left (a^2-b^2-c^2\right ) (a+b \cos (x)+c \sin (x))^2}-\frac {a b C-\left (3 a A c-a^2 C-2 c^2 C\right ) \cos (x)+b (3 a A-2 c C) \sin (x)}{2 \left (a^2-b^2-c^2\right )^2 (a+b \cos (x)+c \sin (x))}+\frac {\left (2 a^2 A+A \left (b^2+c^2\right )-3 a c C\right ) \int \frac {1}{a+b \cos (x)+c \sin (x)} \, dx}{2 \left (a^2-b^2-c^2\right )^2} \\ & = -\frac {b C-(A c-a C) \cos (x)+A b \sin (x)}{2 \left (a^2-b^2-c^2\right ) (a+b \cos (x)+c \sin (x))^2}-\frac {a b C-\left (3 a A c-a^2 C-2 c^2 C\right ) \cos (x)+b (3 a A-2 c C) \sin (x)}{2 \left (a^2-b^2-c^2\right )^2 (a+b \cos (x)+c \sin (x))}+\frac {\left (2 a^2 A+A \left (b^2+c^2\right )-3 a c C\right ) \text {Subst}\left (\int \frac {1}{a+b+2 c x+(a-b) x^2} \, dx,x,\tan \left (\frac {x}{2}\right )\right )}{\left (a^2-b^2-c^2\right )^2} \\ & = -\frac {b C-(A c-a C) \cos (x)+A b \sin (x)}{2 \left (a^2-b^2-c^2\right ) (a+b \cos (x)+c \sin (x))^2}-\frac {a b C-\left (3 a A c-a^2 C-2 c^2 C\right ) \cos (x)+b (3 a A-2 c C) \sin (x)}{2 \left (a^2-b^2-c^2\right )^2 (a+b \cos (x)+c \sin (x))}-\frac {\left (2 \left (2 a^2 A+A \left (b^2+c^2\right )-3 a c C\right )\right ) \text {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2-c^2\right )-x^2} \, dx,x,2 c+2 (a-b) \tan \left (\frac {x}{2}\right )\right )}{\left (a^2-b^2-c^2\right )^2} \\ & = \frac {\left (2 a^2 A+A \left (b^2+c^2\right )-3 a c C\right ) \arctan \left (\frac {c+(a-b) \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2-c^2}}\right )}{\left (a^2-b^2-c^2\right )^{5/2}}-\frac {b C-(A c-a C) \cos (x)+A b \sin (x)}{2 \left (a^2-b^2-c^2\right ) (a+b \cos (x)+c \sin (x))^2}-\frac {a b C-\left (3 a A c-a^2 C-2 c^2 C\right ) \cos (x)+b (3 a A-2 c C) \sin (x)}{2 \left (a^2-b^2-c^2\right )^2 (a+b \cos (x)+c \sin (x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.89 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.80 \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=-\frac {\left (2 a^2 A+A \left (b^2+c^2\right )-3 a c C\right ) \text {arctanh}\left (\frac {c+(a-b) \tan \left (\frac {x}{2}\right )}{\sqrt {-a^2+b^2+c^2}}\right )}{\left (-a^2+b^2+c^2\right )^{5/2}}+\frac {-6 a^3 A c-3 a A b^2 c-3 a A c^3+2 a^4 C-4 a^2 b^2 C+2 b^4 C+5 a^2 c^2 C+4 b^2 c^2 C+2 c^4 C-2 b c \left (2 a^2 A+A \left (b^2+c^2\right )-3 a c C\right ) \cos (x)-c \left (-3 a A \left (b^2+c^2\right )+a^2 c C+2 c \left (b^2+c^2\right ) C\right ) \cos (2 x)-8 a^2 A b^2 \sin (x)+2 A b^4 \sin (x)-12 a^2 A c^2 \sin (x)+2 A b^2 c^2 \sin (x)+4 a^3 c C \sin (x)+2 a b^2 c C \sin (x)+8 a c^3 C \sin (x)-3 a A b^3 \sin (2 x)-3 a A b c^2 \sin (2 x)+a^2 b c C \sin (2 x)+2 b^3 c C \sin (2 x)+2 b c^3 C \sin (2 x)}{4 b \left (-a^2+b^2+c^2\right )^2 (a+b \cos (x)+c \sin (x))^2} \]

[In]

Integrate[(A + C*Sin[x])/(a + b*Cos[x] + c*Sin[x])^3,x]

[Out]

-(((2*a^2*A + A*(b^2 + c^2) - 3*a*c*C)*ArcTanh[(c + (a - b)*Tan[x/2])/Sqrt[-a^2 + b^2 + c^2]])/(-a^2 + b^2 + c
^2)^(5/2)) + (-6*a^3*A*c - 3*a*A*b^2*c - 3*a*A*c^3 + 2*a^4*C - 4*a^2*b^2*C + 2*b^4*C + 5*a^2*c^2*C + 4*b^2*c^2
*C + 2*c^4*C - 2*b*c*(2*a^2*A + A*(b^2 + c^2) - 3*a*c*C)*Cos[x] - c*(-3*a*A*(b^2 + c^2) + a^2*c*C + 2*c*(b^2 +
 c^2)*C)*Cos[2*x] - 8*a^2*A*b^2*Sin[x] + 2*A*b^4*Sin[x] - 12*a^2*A*c^2*Sin[x] + 2*A*b^2*c^2*Sin[x] + 4*a^3*c*C
*Sin[x] + 2*a*b^2*c*C*Sin[x] + 8*a*c^3*C*Sin[x] - 3*a*A*b^3*Sin[2*x] - 3*a*A*b*c^2*Sin[2*x] + a^2*b*c*C*Sin[2*
x] + 2*b^3*c*C*Sin[2*x] + 2*b*c^3*C*Sin[2*x])/(4*b*(-a^2 + b^2 + c^2)^2*(a + b*Cos[x] + c*Sin[x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(831\) vs. \(2(192)=384\).

Time = 1.74 (sec) , antiderivative size = 832, normalized size of antiderivative = 4.16

method result size
default \(\frac {-\frac {\left (4 A \,a^{3} b -7 A \,a^{2} b^{2}-5 A \,a^{2} c^{2}+2 A a \,b^{3}+2 A a b \,c^{2}+A \,b^{4}+3 A \,b^{2} c^{2}+2 A \,c^{4}+3 C \,a^{3} c -6 C \,a^{2} b c +3 C a \,b^{2} c \right ) \tan \left (\frac {x}{2}\right )^{3}}{\left (a^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}+b^{4}+2 b^{2} c^{2}+c^{4}\right ) \left (a -b \right )}+\frac {\left (4 A \,a^{4} c -12 A \,a^{3} b c +13 A \,a^{2} b^{2} c +7 A \,a^{2} c^{3}-6 A a \,b^{3} c -6 A a b \,c^{3}+A \,b^{4} c -A \,b^{2} c^{3}-2 A \,c^{5}-2 C \,a^{5}+2 C \,a^{4} b +4 C \,a^{3} b^{2}-5 C \,a^{3} c^{2}-4 C \,a^{2} b^{3}+14 C \,a^{2} b \,c^{2}-2 C a \,b^{4}-13 C a \,b^{2} c^{2}-2 C a \,c^{4}+2 C \,b^{5}+4 C \,b^{3} c^{2}+2 C b \,c^{4}\right ) \tan \left (\frac {x}{2}\right )^{2}}{\left (a^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}+b^{4}+2 b^{2} c^{2}+c^{4}\right ) \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (4 A \,a^{4} b -5 A \,a^{3} b^{2}-11 A \,a^{3} c^{2}-3 A \,a^{2} b^{3}+3 A \,a^{2} b \,c^{2}+5 A a \,b^{4}+7 A a \,b^{2} c^{2}+2 A a \,c^{4}-A \,b^{5}+A \,b^{3} c^{2}+2 A b \,c^{4}+5 C \,a^{4} c -5 C \,a^{3} b c -5 C \,a^{2} b^{2} c +4 C \,a^{2} c^{3}+5 C a \,b^{3} c -4 C a b \,c^{3}\right ) \tan \left (\frac {x}{2}\right )}{\left (a^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}+b^{4}+2 b^{2} c^{2}+c^{4}\right ) \left (a^{2}-2 a b +b^{2}\right )}+\frac {4 A \,a^{4} c -3 A \,a^{2} b^{2} c -A \,a^{2} c^{3}-A \,b^{4} c -A \,b^{2} c^{3}-2 C \,a^{5}+4 C \,a^{3} b^{2}-C \,a^{3} c^{2}-2 C a \,b^{4}+C a \,b^{2} c^{2}}{\left (a^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}+b^{4}+2 b^{2} c^{2}+c^{4}\right ) \left (a^{2}-2 a b +b^{2}\right )}}{\left (\tan \left (\frac {x}{2}\right )^{2} a -\tan \left (\frac {x}{2}\right )^{2} b +2 c \tan \left (\frac {x}{2}\right )+a +b \right )^{2}}+\frac {\left (2 a^{2} A +A \,b^{2}+A \,c^{2}-3 a c C \right ) \arctan \left (\frac {2 \left (a -b \right ) \tan \left (\frac {x}{2}\right )+2 c}{2 \sqrt {a^{2}-b^{2}-c^{2}}}\right )}{\left (a^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}+b^{4}+2 b^{2} c^{2}+c^{4}\right ) \sqrt {a^{2}-b^{2}-c^{2}}}\) \(832\)
risch \(\text {Expression too large to display}\) \(1656\)

[In]

int((A+C*sin(x))/(a+b*cos(x)+c*sin(x))^3,x,method=_RETURNVERBOSE)

[Out]

2*(-1/2*(4*A*a^3*b-7*A*a^2*b^2-5*A*a^2*c^2+2*A*a*b^3+2*A*a*b*c^2+A*b^4+3*A*b^2*c^2+2*A*c^4+3*C*a^3*c-6*C*a^2*b
*c+3*C*a*b^2*c)/(a^4-2*a^2*b^2-2*a^2*c^2+b^4+2*b^2*c^2+c^4)/(a-b)*tan(1/2*x)^3+1/2*(4*A*a^4*c-12*A*a^3*b*c+13*
A*a^2*b^2*c+7*A*a^2*c^3-6*A*a*b^3*c-6*A*a*b*c^3+A*b^4*c-A*b^2*c^3-2*A*c^5-2*C*a^5+2*C*a^4*b+4*C*a^3*b^2-5*C*a^
3*c^2-4*C*a^2*b^3+14*C*a^2*b*c^2-2*C*a*b^4-13*C*a*b^2*c^2-2*C*a*c^4+2*C*b^5+4*C*b^3*c^2+2*C*b*c^4)/(a^4-2*a^2*
b^2-2*a^2*c^2+b^4+2*b^2*c^2+c^4)/(a^2-2*a*b+b^2)*tan(1/2*x)^2-1/2*(4*A*a^4*b-5*A*a^3*b^2-11*A*a^3*c^2-3*A*a^2*
b^3+3*A*a^2*b*c^2+5*A*a*b^4+7*A*a*b^2*c^2+2*A*a*c^4-A*b^5+A*b^3*c^2+2*A*b*c^4+5*C*a^4*c-5*C*a^3*b*c-5*C*a^2*b^
2*c+4*C*a^2*c^3+5*C*a*b^3*c-4*C*a*b*c^3)/(a^4-2*a^2*b^2-2*a^2*c^2+b^4+2*b^2*c^2+c^4)/(a^2-2*a*b+b^2)*tan(1/2*x
)+1/2*(4*A*a^4*c-3*A*a^2*b^2*c-A*a^2*c^3-A*b^4*c-A*b^2*c^3-2*C*a^5+4*C*a^3*b^2-C*a^3*c^2-2*C*a*b^4+C*a*b^2*c^2
)/(a^4-2*a^2*b^2-2*a^2*c^2+b^4+2*b^2*c^2+c^4)/(a^2-2*a*b+b^2))/(tan(1/2*x)^2*a-tan(1/2*x)^2*b+2*c*tan(1/2*x)+a
+b)^2+(2*A*a^2+A*b^2+A*c^2-3*C*a*c)/(a^4-2*a^2*b^2-2*a^2*c^2+b^4+2*b^2*c^2+c^4)/(a^2-b^2-c^2)^(1/2)*arctan(1/2
*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1676 vs. \(2 (187) = 374\).

Time = 0.47 (sec) , antiderivative size = 3513, normalized size of antiderivative = 17.56 \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=\text {Too large to display} \]

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x))^3,x, algorithm="fricas")

[Out]

[1/4*(2*C*a^6*b - 6*C*a^4*b^3 + 6*C*a^2*b^5 - 2*C*b^7 + 6*A*a*b*c^5 - 6*C*b*c^6 + 2*(4*C*a^2*b - 7*C*b^3)*c^4
- 6*(A*a^3*b - 2*A*a*b^3)*c^3 - 2*(2*C*a^4*b - 7*C*a^2*b^3 + 5*C*b^5)*c^2 - 4*(3*A*a*b*c^5 - 2*C*b*c^6 + (C*a^
2*b - 4*C*b^3)*c^4 - 3*(A*a^3*b - 2*A*a*b^3)*c^3 + (C*a^4*b + C*a^2*b^3 - 2*C*b^5)*c^2 - 3*(A*a^3*b^3 - A*a*b^
5)*c)*cos(x)^2 - (2*A*a^4*b^2 + A*a^2*b^4 - 3*C*a^3*b^2*c - 3*C*a*c^5 + A*c^6 + (3*A*a^2 + 2*A*b^2)*c^4 - 3*(C
*a^3 + C*a*b^2)*c^3 + (2*A*a^4 + 4*A*a^2*b^2 + A*b^4)*c^2 + (2*A*a^2*b^4 + A*b^6 - 3*C*a*b^4*c + A*b^4*c^2 + 3
*C*a*c^5 - A*c^6 - (2*A*a^2 + A*b^2)*c^4)*cos(x)^2 + 2*(2*A*a^3*b^3 + A*a*b^5 - 3*C*a^2*b^3*c - 3*C*a^2*b*c^3
+ A*a*b*c^4 + 2*(A*a^3*b + A*a*b^3)*c^2)*cos(x) - 2*(3*C*a^2*b^2*c^2 + 3*C*a^2*c^4 - A*a*c^5 - 2*(A*a^3 + A*a*
b^2)*c^3 - (2*A*a^3*b^2 + A*a*b^4)*c + (3*C*a*b^3*c^2 + 3*C*a*b*c^4 - A*b*c^5 - 2*(A*a^2*b + A*b^3)*c^3 - (2*A
*a^2*b^3 + A*b^5)*c)*cos(x))*sin(x))*sqrt(-a^2 + b^2 + c^2)*log(-(a^2*b^2 - 2*b^4 - c^4 - (a^2 + 3*b^2)*c^2 -
(2*a^2*b^2 - b^4 - 2*a^2*c^2 + c^4)*cos(x)^2 - 2*(a*b^3 + a*b*c^2)*cos(x) - 2*(a*b^2*c + a*c^3 - (b*c^3 - (2*a
^2*b - b^3)*c)*cos(x))*sin(x) + 2*(2*a*b*c*cos(x)^2 - a*b*c + (b^2*c + c^3)*cos(x) - (b^3 + b*c^2 + (a*b^2 - a
*c^2)*cos(x))*sin(x))*sqrt(-a^2 + b^2 + c^2))/(2*a*b*cos(x) + (b^2 - c^2)*cos(x)^2 + a^2 + c^2 + 2*(b*c*cos(x)
 + a*c)*sin(x))) - 6*(A*a^3*b^3 - A*a*b^5)*c + 2*(C*a*c^6 + A*c^7 - (5*A*a^2 - 3*A*b^2)*c^5 + (C*a^3 + 2*C*a*b
^2)*c^4 + (4*A*a^4 - 10*A*a^2*b^2 + 3*A*b^4)*c^3 - (2*C*a^5 - C*a^3*b^2 - C*a*b^4)*c^2 + (4*A*a^4*b^2 - 5*A*a^
2*b^4 + A*b^6)*c)*cos(x) - 2*(4*A*a^4*b^3 - 5*A*a^2*b^5 + A*b^7 + C*a*b*c^5 + A*b*c^6 - (5*A*a^2*b - 3*A*b^3)*
c^4 + (C*a^3*b + 2*C*a*b^3)*c^3 + (4*A*a^4*b - 10*A*a^2*b^3 + 3*A*b^5)*c^2 - (2*C*a^5*b - C*a^3*b^3 - C*a*b^5)
*c + (3*A*a^3*b^4 - 3*A*a*b^6 - 3*A*a*b^4*c^2 + 3*A*a*c^6 - 2*C*c^7 + (C*a^2 - 2*C*b^2)*c^5 - 3*(A*a^3 - A*a*b
^2)*c^4 + (C*a^4 + 2*C*b^4)*c^3 - (C*a^4*b^2 + C*a^2*b^4 - 2*C*b^6)*c)*cos(x))*sin(x))/(a^8*b^2 - 3*a^6*b^4 +
3*a^4*b^6 - a^2*b^8 - c^10 + 2*(a^2 - 2*b^2)*c^8 + (5*a^2*b^2 - 6*b^4)*c^6 - (2*a^6 - 3*a^4*b^2 - 3*a^2*b^4 +
4*b^6)*c^4 + (a^8 - 5*a^6*b^2 + 6*a^4*b^4 - a^2*b^6 - b^8)*c^2 + (a^6*b^4 - 3*a^4*b^6 + 3*a^2*b^8 - b^10 + c^1
0 - 3*(a^2 - b^2)*c^8 + (3*a^4 - 6*a^2*b^2 + 2*b^4)*c^6 - (a^6 - 3*a^4*b^2 + 2*b^6)*c^4 - 3*(a^4*b^4 - 2*a^2*b
^6 + b^8)*c^2)*cos(x)^2 + 2*(a^7*b^3 - 3*a^5*b^5 + 3*a^3*b^7 - a*b^9 - a*b*c^8 + (3*a^3*b - 4*a*b^3)*c^6 - 3*(
a^5*b - 3*a^3*b^3 + 2*a*b^5)*c^4 + (a^7*b - 6*a^5*b^3 + 9*a^3*b^5 - 4*a*b^7)*c^2)*cos(x) - 2*(a*c^9 - (3*a^3 -
 4*a*b^2)*c^7 + 3*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^7 - 6*a^5*b^2 + 9*a^3*b^4 - 4*a*b^6)*c^3 - (a^7*b^2 - 3
*a^5*b^4 + 3*a^3*b^6 - a*b^8)*c + (b*c^9 - (3*a^2*b - 4*b^3)*c^7 + 3*(a^4*b - 3*a^2*b^3 + 2*b^5)*c^5 - (a^6*b
- 6*a^4*b^3 + 9*a^2*b^5 - 4*b^7)*c^3 - (a^6*b^3 - 3*a^4*b^5 + 3*a^2*b^7 - b^9)*c)*cos(x))*sin(x)), 1/2*(C*a^6*
b - 3*C*a^4*b^3 + 3*C*a^2*b^5 - C*b^7 + 3*A*a*b*c^5 - 3*C*b*c^6 + (4*C*a^2*b - 7*C*b^3)*c^4 - 3*(A*a^3*b - 2*A
*a*b^3)*c^3 - (2*C*a^4*b - 7*C*a^2*b^3 + 5*C*b^5)*c^2 - 2*(3*A*a*b*c^5 - 2*C*b*c^6 + (C*a^2*b - 4*C*b^3)*c^4 -
 3*(A*a^3*b - 2*A*a*b^3)*c^3 + (C*a^4*b + C*a^2*b^3 - 2*C*b^5)*c^2 - 3*(A*a^3*b^3 - A*a*b^5)*c)*cos(x)^2 + (2*
A*a^4*b^2 + A*a^2*b^4 - 3*C*a^3*b^2*c - 3*C*a*c^5 + A*c^6 + (3*A*a^2 + 2*A*b^2)*c^4 - 3*(C*a^3 + C*a*b^2)*c^3
+ (2*A*a^4 + 4*A*a^2*b^2 + A*b^4)*c^2 + (2*A*a^2*b^4 + A*b^6 - 3*C*a*b^4*c + A*b^4*c^2 + 3*C*a*c^5 - A*c^6 - (
2*A*a^2 + A*b^2)*c^4)*cos(x)^2 + 2*(2*A*a^3*b^3 + A*a*b^5 - 3*C*a^2*b^3*c - 3*C*a^2*b*c^3 + A*a*b*c^4 + 2*(A*a
^3*b + A*a*b^3)*c^2)*cos(x) - 2*(3*C*a^2*b^2*c^2 + 3*C*a^2*c^4 - A*a*c^5 - 2*(A*a^3 + A*a*b^2)*c^3 - (2*A*a^3*
b^2 + A*a*b^4)*c + (3*C*a*b^3*c^2 + 3*C*a*b*c^4 - A*b*c^5 - 2*(A*a^2*b + A*b^3)*c^3 - (2*A*a^2*b^3 + A*b^5)*c)
*cos(x))*sin(x))*sqrt(a^2 - b^2 - c^2)*arctan(-(a*b*cos(x) + a*c*sin(x) + b^2 + c^2)*sqrt(a^2 - b^2 - c^2)/((c
^3 - (a^2 - b^2)*c)*cos(x) + (a^2*b - b^3 - b*c^2)*sin(x))) - 3*(A*a^3*b^3 - A*a*b^5)*c + (C*a*c^6 + A*c^7 - (
5*A*a^2 - 3*A*b^2)*c^5 + (C*a^3 + 2*C*a*b^2)*c^4 + (4*A*a^4 - 10*A*a^2*b^2 + 3*A*b^4)*c^3 - (2*C*a^5 - C*a^3*b
^2 - C*a*b^4)*c^2 + (4*A*a^4*b^2 - 5*A*a^2*b^4 + A*b^6)*c)*cos(x) - (4*A*a^4*b^3 - 5*A*a^2*b^5 + A*b^7 + C*a*b
*c^5 + A*b*c^6 - (5*A*a^2*b - 3*A*b^3)*c^4 + (C*a^3*b + 2*C*a*b^3)*c^3 + (4*A*a^4*b - 10*A*a^2*b^3 + 3*A*b^5)*
c^2 - (2*C*a^5*b - C*a^3*b^3 - C*a*b^5)*c + (3*A*a^3*b^4 - 3*A*a*b^6 - 3*A*a*b^4*c^2 + 3*A*a*c^6 - 2*C*c^7 + (
C*a^2 - 2*C*b^2)*c^5 - 3*(A*a^3 - A*a*b^2)*c^4 + (C*a^4 + 2*C*b^4)*c^3 - (C*a^4*b^2 + C*a^2*b^4 - 2*C*b^6)*c)*
cos(x))*sin(x))/(a^8*b^2 - 3*a^6*b^4 + 3*a^4*b^6 - a^2*b^8 - c^10 + 2*(a^2 - 2*b^2)*c^8 + (5*a^2*b^2 - 6*b^4)*
c^6 - (2*a^6 - 3*a^4*b^2 - 3*a^2*b^4 + 4*b^6)*c^4 + (a^8 - 5*a^6*b^2 + 6*a^4*b^4 - a^2*b^6 - b^8)*c^2 + (a^6*b
^4 - 3*a^4*b^6 + 3*a^2*b^8 - b^10 + c^10 - 3*(a^2 - b^2)*c^8 + (3*a^4 - 6*a^2*b^2 + 2*b^4)*c^6 - (a^6 - 3*a^4*
b^2 + 2*b^6)*c^4 - 3*(a^4*b^4 - 2*a^2*b^6 + b^8)*c^2)*cos(x)^2 + 2*(a^7*b^3 - 3*a^5*b^5 + 3*a^3*b^7 - a*b^9 -
a*b*c^8 + (3*a^3*b - 4*a*b^3)*c^6 - 3*(a^5*b - 3*a^3*b^3 + 2*a*b^5)*c^4 + (a^7*b - 6*a^5*b^3 + 9*a^3*b^5 - 4*a
*b^7)*c^2)*cos(x) - 2*(a*c^9 - (3*a^3 - 4*a*b^2)*c^7 + 3*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^7 - 6*a^5*b^2 +
9*a^3*b^4 - 4*a*b^6)*c^3 - (a^7*b^2 - 3*a^5*b^4 + 3*a^3*b^6 - a*b^8)*c + (b*c^9 - (3*a^2*b - 4*b^3)*c^7 + 3*(a
^4*b - 3*a^2*b^3 + 2*b^5)*c^5 - (a^6*b - 6*a^4*b^3 + 9*a^2*b^5 - 4*b^7)*c^3 - (a^6*b^3 - 3*a^4*b^5 + 3*a^2*b^7
 - b^9)*c)*cos(x))*sin(x))]

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=\text {Timed out} \]

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x))**3,x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c^2+b^2-a^2>0)', see `assume?`
 for more de

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1054 vs. \(2 (187) = 374\).

Time = 0.38 (sec) , antiderivative size = 1054, normalized size of antiderivative = 5.27 \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=\text {Too large to display} \]

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x))^3,x, algorithm="giac")

[Out]

-(2*A*a^2 + A*b^2 - 3*C*a*c + A*c^2)*(pi*floor(1/2*x/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*x) - b*tan
(1/2*x) + c)/sqrt(a^2 - b^2 - c^2)))/((a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 2*b^2*c^2 + c^4)*sqrt(a^2 - b^2 - c
^2)) - (4*A*a^4*b*tan(1/2*x)^3 - 11*A*a^3*b^2*tan(1/2*x)^3 + 9*A*a^2*b^3*tan(1/2*x)^3 - A*a*b^4*tan(1/2*x)^3 -
 A*b^5*tan(1/2*x)^3 + 3*C*a^4*c*tan(1/2*x)^3 - 9*C*a^3*b*c*tan(1/2*x)^3 + 9*C*a^2*b^2*c*tan(1/2*x)^3 - 3*C*a*b
^3*c*tan(1/2*x)^3 - 5*A*a^3*c^2*tan(1/2*x)^3 + 7*A*a^2*b*c^2*tan(1/2*x)^3 + A*a*b^2*c^2*tan(1/2*x)^3 - 3*A*b^3
*c^2*tan(1/2*x)^3 + 2*A*a*c^4*tan(1/2*x)^3 - 2*A*b*c^4*tan(1/2*x)^3 + 2*C*a^5*tan(1/2*x)^2 - 2*C*a^4*b*tan(1/2
*x)^2 - 4*C*a^3*b^2*tan(1/2*x)^2 + 4*C*a^2*b^3*tan(1/2*x)^2 + 2*C*a*b^4*tan(1/2*x)^2 - 2*C*b^5*tan(1/2*x)^2 -
4*A*a^4*c*tan(1/2*x)^2 + 12*A*a^3*b*c*tan(1/2*x)^2 - 13*A*a^2*b^2*c*tan(1/2*x)^2 + 6*A*a*b^3*c*tan(1/2*x)^2 -
A*b^4*c*tan(1/2*x)^2 + 5*C*a^3*c^2*tan(1/2*x)^2 - 14*C*a^2*b*c^2*tan(1/2*x)^2 + 13*C*a*b^2*c^2*tan(1/2*x)^2 -
4*C*b^3*c^2*tan(1/2*x)^2 - 7*A*a^2*c^3*tan(1/2*x)^2 + 6*A*a*b*c^3*tan(1/2*x)^2 + A*b^2*c^3*tan(1/2*x)^2 + 2*C*
a*c^4*tan(1/2*x)^2 - 2*C*b*c^4*tan(1/2*x)^2 + 2*A*c^5*tan(1/2*x)^2 + 4*A*a^4*b*tan(1/2*x) - 5*A*a^3*b^2*tan(1/
2*x) - 3*A*a^2*b^3*tan(1/2*x) + 5*A*a*b^4*tan(1/2*x) - A*b^5*tan(1/2*x) + 5*C*a^4*c*tan(1/2*x) - 5*C*a^3*b*c*t
an(1/2*x) - 5*C*a^2*b^2*c*tan(1/2*x) + 5*C*a*b^3*c*tan(1/2*x) - 11*A*a^3*c^2*tan(1/2*x) + 3*A*a^2*b*c^2*tan(1/
2*x) + 7*A*a*b^2*c^2*tan(1/2*x) + A*b^3*c^2*tan(1/2*x) + 4*C*a^2*c^3*tan(1/2*x) - 4*C*a*b*c^3*tan(1/2*x) + 2*A
*a*c^4*tan(1/2*x) + 2*A*b*c^4*tan(1/2*x) + 2*C*a^5 - 4*C*a^3*b^2 + 2*C*a*b^4 - 4*A*a^4*c + 3*A*a^2*b^2*c + A*b
^4*c + C*a^3*c^2 - C*a*b^2*c^2 + A*a^2*c^3 + A*b^2*c^3)/((a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*
b^5 + b^6 - 2*a^4*c^2 + 4*a^3*b*c^2 - 4*a*b^3*c^2 + 2*b^4*c^2 + a^2*c^4 - 2*a*b*c^4 + b^2*c^4)*(a*tan(1/2*x)^2
 - b*tan(1/2*x)^2 + 2*c*tan(1/2*x) + a + b)^2)

Mupad [B] (verification not implemented)

Time = 33.69 (sec) , antiderivative size = 912, normalized size of antiderivative = 4.56 \[ \int \frac {A+C \sin (x)}{(a+b \cos (x)+c \sin (x))^3} \, dx=-\frac {\frac {2\,C\,a^5-4\,A\,a^4\,c-4\,C\,a^3\,b^2+C\,a^3\,c^2+3\,A\,a^2\,b^2\,c+A\,a^2\,c^3+2\,C\,a\,b^4-C\,a\,b^2\,c^2+A\,b^4\,c+A\,b^2\,c^3}{{\left (a-b\right )}^2\,\left (a^4-2\,a^2\,b^2-2\,a^2\,c^2+b^4+2\,b^2\,c^2+c^4\right )}+\frac {\mathrm {tan}\left (\frac {x}{2}\right )\,\left (4\,A\,a^4\,b+5\,C\,a^4\,c-5\,A\,a^3\,b^2-5\,C\,a^3\,b\,c-11\,A\,a^3\,c^2-3\,A\,a^2\,b^3-5\,C\,a^2\,b^2\,c+3\,A\,a^2\,b\,c^2+4\,C\,a^2\,c^3+5\,A\,a\,b^4+5\,C\,a\,b^3\,c+7\,A\,a\,b^2\,c^2-4\,C\,a\,b\,c^3+2\,A\,a\,c^4-A\,b^5+A\,b^3\,c^2+2\,A\,b\,c^4\right )}{{\left (a-b\right )}^2\,\left (a^4-2\,a^2\,b^2-2\,a^2\,c^2+b^4+2\,b^2\,c^2+c^4\right )}+\frac {{\mathrm {tan}\left (\frac {x}{2}\right )}^2\,\left (2\,C\,a^5-2\,C\,a^4\,b-4\,A\,a^4\,c-4\,C\,a^3\,b^2+12\,A\,a^3\,b\,c+5\,C\,a^3\,c^2+4\,C\,a^2\,b^3-13\,A\,a^2\,b^2\,c-14\,C\,a^2\,b\,c^2-7\,A\,a^2\,c^3+2\,C\,a\,b^4+6\,A\,a\,b^3\,c+13\,C\,a\,b^2\,c^2+6\,A\,a\,b\,c^3+2\,C\,a\,c^4-2\,C\,b^5-A\,b^4\,c-4\,C\,b^3\,c^2+A\,b^2\,c^3-2\,C\,b\,c^4+2\,A\,c^5\right )}{{\left (a-b\right )}^2\,\left (a^4-2\,a^2\,b^2-2\,a^2\,c^2+b^4+2\,b^2\,c^2+c^4\right )}+\frac {{\mathrm {tan}\left (\frac {x}{2}\right )}^3\,\left (4\,A\,a^3\,b+3\,C\,a^3\,c-7\,A\,a^2\,b^2-6\,C\,a^2\,b\,c-5\,A\,a^2\,c^2+2\,A\,a\,b^3+3\,C\,a\,b^2\,c+2\,A\,a\,b\,c^2+A\,b^4+3\,A\,b^2\,c^2+2\,A\,c^4\right )}{\left (a-b\right )\,\left (a^4-2\,a^2\,b^2-2\,a^2\,c^2+b^4+2\,b^2\,c^2+c^4\right )}}{{\mathrm {tan}\left (\frac {x}{2}\right )}^4\,\left (a^2-2\,a\,b+b^2\right )+2\,a\,b+\mathrm {tan}\left (\frac {x}{2}\right )\,\left (4\,a\,c+4\,b\,c\right )+{\mathrm {tan}\left (\frac {x}{2}\right )}^3\,\left (4\,a\,c-4\,b\,c\right )+a^2+b^2+{\mathrm {tan}\left (\frac {x}{2}\right )}^2\,\left (2\,a^2-2\,b^2+4\,c^2\right )}-\frac {\mathrm {atanh}\left (\frac {2\,a^4\,c-4\,a^2\,b^2\,c-4\,a^2\,c^3+2\,b^4\,c+4\,b^2\,c^3+2\,c^5}{2\,{\left (-a^2+b^2+c^2\right )}^{5/2}}+\frac {\mathrm {tan}\left (\frac {x}{2}\right )\,\left (2\,a-2\,b\right )\,\left (a^4-2\,a^2\,b^2-2\,a^2\,c^2+b^4+2\,b^2\,c^2+c^4\right )}{2\,{\left (-a^2+b^2+c^2\right )}^{5/2}}\right )\,\left (2\,A\,a^2-3\,C\,a\,c+A\,b^2+A\,c^2\right )}{{\left (-a^2+b^2+c^2\right )}^{5/2}} \]

[In]

int((A + C*sin(x))/(a + b*cos(x) + c*sin(x))^3,x)

[Out]

- ((2*C*a^5 + A*a^2*c^3 + A*b^2*c^3 - 4*C*a^3*b^2 + C*a^3*c^2 - 4*A*a^4*c + A*b^4*c + 2*C*a*b^4 + 3*A*a^2*b^2*
c - C*a*b^2*c^2)/((a - b)^2*(a^4 + b^4 + c^4 - 2*a^2*b^2 - 2*a^2*c^2 + 2*b^2*c^2)) + (tan(x/2)*(A*b^3*c^2 - 3*
A*a^2*b^3 - 5*A*a^3*b^2 - 11*A*a^3*c^2 - A*b^5 + 4*C*a^2*c^3 + 5*A*a*b^4 + 4*A*a^4*b + 2*A*a*c^4 + 2*A*b*c^4 +
 5*C*a^4*c - 4*C*a*b*c^3 + 5*C*a*b^3*c - 5*C*a^3*b*c + 7*A*a*b^2*c^2 + 3*A*a^2*b*c^2 - 5*C*a^2*b^2*c))/((a - b
)^2*(a^4 + b^4 + c^4 - 2*a^2*b^2 - 2*a^2*c^2 + 2*b^2*c^2)) + (tan(x/2)^2*(2*A*c^5 + 2*C*a^5 - 2*C*b^5 - 7*A*a^
2*c^3 + A*b^2*c^3 + 4*C*a^2*b^3 - 4*C*a^3*b^2 + 5*C*a^3*c^2 - 4*C*b^3*c^2 - 4*A*a^4*c - A*b^4*c + 2*C*a*b^4 -
2*C*a^4*b + 2*C*a*c^4 - 2*C*b*c^4 + 6*A*a*b*c^3 + 6*A*a*b^3*c + 12*A*a^3*b*c - 13*A*a^2*b^2*c + 13*C*a*b^2*c^2
 - 14*C*a^2*b*c^2))/((a - b)^2*(a^4 + b^4 + c^4 - 2*a^2*b^2 - 2*a^2*c^2 + 2*b^2*c^2)) + (tan(x/2)^3*(A*b^4 + 2
*A*c^4 - 7*A*a^2*b^2 - 5*A*a^2*c^2 + 3*A*b^2*c^2 + 2*A*a*b^3 + 4*A*a^3*b + 3*C*a^3*c + 2*A*a*b*c^2 + 3*C*a*b^2
*c - 6*C*a^2*b*c))/((a - b)*(a^4 + b^4 + c^4 - 2*a^2*b^2 - 2*a^2*c^2 + 2*b^2*c^2)))/(tan(x/2)^4*(a^2 - 2*a*b +
 b^2) + 2*a*b + tan(x/2)*(4*a*c + 4*b*c) + tan(x/2)^3*(4*a*c - 4*b*c) + a^2 + b^2 + tan(x/2)^2*(2*a^2 - 2*b^2
+ 4*c^2)) - (atanh((2*a^4*c + 2*b^4*c + 2*c^5 - 4*a^2*c^3 + 4*b^2*c^3 - 4*a^2*b^2*c)/(2*(b^2 - a^2 + c^2)^(5/2
)) + (tan(x/2)*(2*a - 2*b)*(a^4 + b^4 + c^4 - 2*a^2*b^2 - 2*a^2*c^2 + 2*b^2*c^2))/(2*(b^2 - a^2 + c^2)^(5/2)))
*(2*A*a^2 + A*b^2 + A*c^2 - 3*C*a*c))/(b^2 - a^2 + c^2)^(5/2)