\(\int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx\) [620]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 129 \[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {c} \tan (2 a+2 b x)}{\sqrt {2} \sqrt {-c+c \sec (2 a+2 b x)}}\right )}{\sqrt {2} b \sqrt {c}}+\frac {2 \tan (2 a+2 b x)}{3 b \sqrt {-c+c \sec (2 a+2 b x)}}+\frac {\sqrt {-c+c \sec (2 a+2 b x)} \tan (2 a+2 b x)}{3 b c} \]

[Out]

-1/2*arctanh(1/2*c^(1/2)*tan(2*b*x+2*a)*2^(1/2)/(-c+c*sec(2*b*x+2*a))^(1/2))/b*2^(1/2)/c^(1/2)+2/3*tan(2*b*x+2
*a)/b/(-c+c*sec(2*b*x+2*a))^(1/2)+1/3*(-c+c*sec(2*b*x+2*a))^(1/2)*tan(2*b*x+2*a)/b/c

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {4482, 3885, 4086, 3880, 213} \[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {c} \tan (2 a+2 b x)}{\sqrt {2} \sqrt {c \sec (2 a+2 b x)-c}}\right )}{\sqrt {2} b \sqrt {c}}+\frac {\tan (2 a+2 b x) \sqrt {c \sec (2 a+2 b x)-c}}{3 b c}+\frac {2 \tan (2 a+2 b x)}{3 b \sqrt {c \sec (2 a+2 b x)-c}} \]

[In]

Int[Sec[2*(a + b*x)]^3/Sqrt[c*Tan[a + b*x]*Tan[2*(a + b*x)]],x]

[Out]

-(ArcTanh[(Sqrt[c]*Tan[2*a + 2*b*x])/(Sqrt[2]*Sqrt[-c + c*Sec[2*a + 2*b*x]])]/(Sqrt[2]*b*Sqrt[c])) + (2*Tan[2*
a + 2*b*x])/(3*b*Sqrt[-c + c*Sec[2*a + 2*b*x]]) + (Sqrt[-c + c*Sec[2*a + 2*b*x]]*Tan[2*a + 2*b*x])/(3*b*c)

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3885

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*
(b*(m + 1) - a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4482

Int[u_, x_Symbol] :> Int[TrigSimplify[u], x] /; TrigSimplifyQ[u]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^3(2 a+2 b x)}{\sqrt {-c+c \sec (2 a+2 b x)}} \, dx \\ & = \frac {\sqrt {-c+c \sec (2 a+2 b x)} \tan (2 a+2 b x)}{3 b c}+\frac {2 \int \frac {\sec (2 a+2 b x) \left (\frac {c}{2}+c \sec (2 a+2 b x)\right )}{\sqrt {-c+c \sec (2 a+2 b x)}} \, dx}{3 c} \\ & = \frac {2 \tan (2 a+2 b x)}{3 b \sqrt {-c+c \sec (2 a+2 b x)}}+\frac {\sqrt {-c+c \sec (2 a+2 b x)} \tan (2 a+2 b x)}{3 b c}+\int \frac {\sec (2 a+2 b x)}{\sqrt {-c+c \sec (2 a+2 b x)}} \, dx \\ & = \frac {2 \tan (2 a+2 b x)}{3 b \sqrt {-c+c \sec (2 a+2 b x)}}+\frac {\sqrt {-c+c \sec (2 a+2 b x)} \tan (2 a+2 b x)}{3 b c}-\frac {\text {Subst}\left (\int \frac {1}{-2 c+x^2} \, dx,x,-\frac {c \tan (2 a+2 b x)}{\sqrt {-c+c \sec (2 a+2 b x)}}\right )}{b} \\ & = -\frac {\text {arctanh}\left (\frac {\sqrt {c} \tan (2 a+2 b x)}{\sqrt {2} \sqrt {-c+c \sec (2 a+2 b x)}}\right )}{\sqrt {2} b \sqrt {c}}+\frac {2 \tan (2 a+2 b x)}{3 b \sqrt {-c+c \sec (2 a+2 b x)}}+\frac {\sqrt {-c+c \sec (2 a+2 b x)} \tan (2 a+2 b x)}{3 b c} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.16 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.69 \[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=\frac {\cos ^2(a+b x) \csc (2 (a+b x)) \left (2+2 \sec (2 (a+b x))+3 \arctan \left (\sqrt {-1+\tan ^2(a+b x)}\right ) \sqrt {-1+\tan ^2(a+b x)}\right ) \sqrt {c \tan (a+b x) \tan (2 (a+b x))}}{3 b c} \]

[In]

Integrate[Sec[2*(a + b*x)]^3/Sqrt[c*Tan[a + b*x]*Tan[2*(a + b*x)]],x]

[Out]

(Cos[a + b*x]^2*Csc[2*(a + b*x)]*(2 + 2*Sec[2*(a + b*x)] + 3*ArcTan[Sqrt[-1 + Tan[a + b*x]^2]]*Sqrt[-1 + Tan[a
 + b*x]^2])*Sqrt[c*Tan[a + b*x]*Tan[2*(a + b*x)]])/(3*b*c)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(606\) vs. \(2(112)=224\).

Time = 9.81 (sec) , antiderivative size = 607, normalized size of antiderivative = 4.71

method result size
default \(\frac {\sqrt {2}\, \sin \left (x b +a \right ) \left (12 \cos \left (x b +a \right )^{4} \ln \left (\frac {2 \cos \left (x b +a \right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}+2 \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}-4 \cos \left (x b +a \right )-2}{1+\cos \left (x b +a \right )}\right )-12 \cos \left (x b +a \right )^{4} \operatorname {arctanh}\left (\frac {2 \cos \left (x b +a \right )-1}{\left (1+\cos \left (x b +a \right )\right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}}\right )+8 \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}\, \cos \left (x b +a \right )^{4}+8 \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}\, \cos \left (x b +a \right )^{3}-12 \cos \left (x b +a \right )^{2} \ln \left (\frac {2 \cos \left (x b +a \right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}+2 \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}-4 \cos \left (x b +a \right )-2}{1+\cos \left (x b +a \right )}\right )+12 \cos \left (x b +a \right )^{2} \operatorname {arctanh}\left (\frac {2 \cos \left (x b +a \right )-1}{\left (1+\cos \left (x b +a \right )\right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}}\right )+3 \ln \left (\frac {2 \cos \left (x b +a \right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}+2 \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}-4 \cos \left (x b +a \right )-2}{1+\cos \left (x b +a \right )}\right )-3 \,\operatorname {arctanh}\left (\frac {2 \cos \left (x b +a \right )-1}{\left (1+\cos \left (x b +a \right )\right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}}\right )\right ) \sqrt {4}}{24 b \left (2 \cos \left (x b +a \right )^{2}-1\right )^{2} \sqrt {\frac {c \sin \left (x b +a \right )^{2}}{2 \cos \left (x b +a \right )^{2}-1}}\, \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}\, \left (1+\cos \left (x b +a \right )\right ) \left (-3+2 \sqrt {2}\right )^{2} \left (3+2 \sqrt {2}\right )^{2}}\) \(607\)

[In]

int(sec(2*b*x+2*a)^3/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/24*2^(1/2)/b*sin(b*x+a)*(12*cos(b*x+a)^4*ln(2*(cos(b*x+a)*((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)+((2*co
s(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)-2*cos(b*x+a)-1)/(1+cos(b*x+a)))-12*cos(b*x+a)^4*arctanh((2*cos(b*x+a)-1)
/(1+cos(b*x+a))/((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2))+8*((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)*cos
(b*x+a)^4+8*((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)*cos(b*x+a)^3-12*cos(b*x+a)^2*ln(2*(cos(b*x+a)*((2*cos(
b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)+((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)-2*cos(b*x+a)-1)/(1+cos(b*x+a))
)+12*cos(b*x+a)^2*arctanh((2*cos(b*x+a)-1)/(1+cos(b*x+a))/((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2))+3*ln(2*
(cos(b*x+a)*((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)+((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)-2*cos(b*x+
a)-1)/(1+cos(b*x+a)))-3*arctanh((2*cos(b*x+a)-1)/(1+cos(b*x+a))/((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)))/
(2*cos(b*x+a)^2-1)^2/(c*sin(b*x+a)^2/(2*cos(b*x+a)^2-1))^(1/2)/((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)/(1+
cos(b*x+a))*4^(1/2)/(-3+2*2^(1/2))^2/(3+2*2^(1/2))^2

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 294, normalized size of antiderivative = 2.28 \[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=\left [\frac {\frac {3 \, \sqrt {2} {\left (c \tan \left (b x + a\right )^{3} - c \tan \left (b x + a\right )\right )} \log \left (\frac {\tan \left (b x + a\right )^{3} - \frac {2 \, \sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}} {\left (\tan \left (b x + a\right )^{2} - 1\right )}}{\sqrt {c}} - 2 \, \tan \left (b x + a\right )}{\tan \left (b x + a\right )^{3}}\right )}{\sqrt {c}} - 8 \, \sqrt {2} \sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}}{12 \, {\left (b c \tan \left (b x + a\right )^{3} - b c \tan \left (b x + a\right )\right )}}, -\frac {3 \, \sqrt {2} {\left (c \tan \left (b x + a\right )^{3} - c \tan \left (b x + a\right )\right )} \sqrt {-\frac {1}{c}} \arctan \left (\frac {\sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}} {\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt {-\frac {1}{c}}}{\tan \left (b x + a\right )}\right ) + 4 \, \sqrt {2} \sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}}}{6 \, {\left (b c \tan \left (b x + a\right )^{3} - b c \tan \left (b x + a\right )\right )}}\right ] \]

[In]

integrate(sec(2*b*x+2*a)^3/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x, algorithm="fricas")

[Out]

[1/12*(3*sqrt(2)*(c*tan(b*x + a)^3 - c*tan(b*x + a))*log((tan(b*x + a)^3 - 2*sqrt(-c*tan(b*x + a)^2/(tan(b*x +
 a)^2 - 1))*(tan(b*x + a)^2 - 1)/sqrt(c) - 2*tan(b*x + a))/tan(b*x + a)^3)/sqrt(c) - 8*sqrt(2)*sqrt(-c*tan(b*x
 + a)^2/(tan(b*x + a)^2 - 1)))/(b*c*tan(b*x + a)^3 - b*c*tan(b*x + a)), -1/6*(3*sqrt(2)*(c*tan(b*x + a)^3 - c*
tan(b*x + a))*sqrt(-1/c)*arctan(sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 - 1))*(tan(b*x + a)^2 - 1)*sqrt(-1/c)/t
an(b*x + a)) + 4*sqrt(2)*sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 - 1)))/(b*c*tan(b*x + a)^3 - b*c*tan(b*x + a))
]

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=\text {Timed out} \]

[In]

integrate(sec(2*b*x+2*a)**3/(c*tan(b*x+a)*tan(2*b*x+2*a))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=\int { \frac {\sec \left (2 \, b x + 2 \, a\right )^{3}}{\sqrt {c \tan \left (2 \, b x + 2 \, a\right ) \tan \left (b x + a\right )}} \,d x } \]

[In]

integrate(sec(2*b*x+2*a)^3/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(2*b*x + 2*a)^3/sqrt(c*tan(2*b*x + 2*a)*tan(b*x + a)), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=\text {Timed out} \]

[In]

integrate(sec(2*b*x+2*a)^3/(c*tan(b*x+a)*tan(2*b*x+2*a))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^3(2 (a+b x))}{\sqrt {c \tan (a+b x) \tan (2 (a+b x))}} \, dx=\int \frac {1}{{\cos \left (2\,a+2\,b\,x\right )}^3\,\sqrt {c\,\mathrm {tan}\left (a+b\,x\right )\,\mathrm {tan}\left (2\,a+2\,b\,x\right )}} \,d x \]

[In]

int(1/(cos(2*a + 2*b*x)^3*(c*tan(a + b*x)*tan(2*a + 2*b*x))^(1/2)),x)

[Out]

int(1/(cos(2*a + 2*b*x)^3*(c*tan(a + b*x)*tan(2*a + 2*b*x))^(1/2)), x)