\(\int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx\) [629]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 93 \[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {c} \tan (2 a+2 b x)}{\sqrt {2} \sqrt {-c+c \sec (2 a+2 b x)}}\right )}{4 \sqrt {2} b c^{3/2}}-\frac {\tan (2 a+2 b x)}{4 b (-c+c \sec (2 a+2 b x))^{3/2}} \]

[Out]

1/8*arctanh(1/2*c^(1/2)*tan(2*b*x+2*a)*2^(1/2)/(-c+c*sec(2*b*x+2*a))^(1/2))/b/c^(3/2)*2^(1/2)-1/4*tan(2*b*x+2*
a)/b/(-c+c*sec(2*b*x+2*a))^(3/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {4482, 3881, 3880, 213} \[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {c} \tan (2 a+2 b x)}{\sqrt {2} \sqrt {c \sec (2 a+2 b x)-c}}\right )}{4 \sqrt {2} b c^{3/2}}-\frac {\tan (2 a+2 b x)}{4 b (c \sec (2 a+2 b x)-c)^{3/2}} \]

[In]

Int[Sec[2*(a + b*x)]/(c*Tan[a + b*x]*Tan[2*(a + b*x)])^(3/2),x]

[Out]

ArcTanh[(Sqrt[c]*Tan[2*a + 2*b*x])/(Sqrt[2]*Sqrt[-c + c*Sec[2*a + 2*b*x]])]/(4*Sqrt[2]*b*c^(3/2)) - Tan[2*a +
2*b*x]/(4*b*(-c + c*Sec[2*a + 2*b*x])^(3/2))

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3881

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((a
+ b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 4482

Int[u_, x_Symbol] :> Int[TrigSimplify[u], x] /; TrigSimplifyQ[u]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec (2 a+2 b x)}{(-c+c \sec (2 a+2 b x))^{3/2}} \, dx \\ & = -\frac {\tan (2 a+2 b x)}{4 b (-c+c \sec (2 a+2 b x))^{3/2}}-\frac {\int \frac {\sec (2 a+2 b x)}{\sqrt {-c+c \sec (2 a+2 b x)}} \, dx}{4 c} \\ & = -\frac {\tan (2 a+2 b x)}{4 b (-c+c \sec (2 a+2 b x))^{3/2}}+\frac {\text {Subst}\left (\int \frac {1}{-2 c+x^2} \, dx,x,-\frac {c \tan (2 a+2 b x)}{\sqrt {-c+c \sec (2 a+2 b x)}}\right )}{4 b c} \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {c} \tan (2 a+2 b x)}{\sqrt {2} \sqrt {-c+c \sec (2 a+2 b x)}}\right )}{4 \sqrt {2} b c^{3/2}}-\frac {\tan (2 a+2 b x)}{4 b (-c+c \sec (2 a+2 b x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.03 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.89 \[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=-\frac {\left (1+\arctan \left (\sqrt {-1+\tan ^2(a+b x)}\right ) \sec (2 (a+b x)) \sin ^2(a+b x) \sqrt {-1+\tan ^2(a+b x)}\right ) \tan (2 (a+b x))}{4 b (c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \]

[In]

Integrate[Sec[2*(a + b*x)]/(c*Tan[a + b*x]*Tan[2*(a + b*x)])^(3/2),x]

[Out]

-1/4*((1 + ArcTan[Sqrt[-1 + Tan[a + b*x]^2]]*Sec[2*(a + b*x)]*Sin[a + b*x]^2*Sqrt[-1 + Tan[a + b*x]^2])*Tan[2*
(a + b*x)])/(b*(c*Tan[a + b*x]*Tan[2*(a + b*x)])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(376\) vs. \(2(78)=156\).

Time = 4.18 (sec) , antiderivative size = 377, normalized size of antiderivative = 4.05

method result size
default \(-\frac {\sqrt {2}\, \csc \left (x b +a \right ) \left (2 \cos \left (x b +a \right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}+\operatorname {arctanh}\left (\frac {2 \cos \left (x b +a \right )-1}{\left (1+\cos \left (x b +a \right )\right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}}\right ) \cos \left (x b +a \right )-\ln \left (\frac {2 \cos \left (x b +a \right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}+2 \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}-4 \cos \left (x b +a \right )-2}{1+\cos \left (x b +a \right )}\right ) \cos \left (x b +a \right )-\operatorname {arctanh}\left (\frac {2 \cos \left (x b +a \right )-1}{\left (1+\cos \left (x b +a \right )\right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}}\right )+\ln \left (\frac {2 \cos \left (x b +a \right ) \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}+2 \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}-4 \cos \left (x b +a \right )-2}{1+\cos \left (x b +a \right )}\right )\right ) \sqrt {4}}{32 c b \sqrt {\frac {c \sin \left (x b +a \right )^{2}}{2 \cos \left (x b +a \right )^{2}-1}}\, \sqrt {\frac {2 \cos \left (x b +a \right )^{2}-1}{\left (1+\cos \left (x b +a \right )\right )^{2}}}}\) \(377\)

[In]

int(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/32*2^(1/2)/c/b*csc(b*x+a)*(2*cos(b*x+a)*((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)+arctanh((2*cos(b*x+a)-1
)/(1+cos(b*x+a))/((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2))*cos(b*x+a)-ln(2*(cos(b*x+a)*((2*cos(b*x+a)^2-1)/
(1+cos(b*x+a))^2)^(1/2)+((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)-2*cos(b*x+a)-1)/(1+cos(b*x+a)))*cos(b*x+a)
-arctanh((2*cos(b*x+a)-1)/(1+cos(b*x+a))/((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2))+ln(2*(cos(b*x+a)*((2*cos
(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)+((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)-2*cos(b*x+a)-1)/(1+cos(b*x+a)
)))/(c*sin(b*x+a)^2/(2*cos(b*x+a)^2-1))^(1/2)/((2*cos(b*x+a)^2-1)/(1+cos(b*x+a))^2)^(1/2)*4^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 269, normalized size of antiderivative = 2.89 \[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=\left [\frac {\sqrt {2} \sqrt {c} \log \left (\frac {c \tan \left (b x + a\right )^{3} + 2 \, \sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}} {\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt {c} - 2 \, c \tan \left (b x + a\right )}{\tan \left (b x + a\right )^{3}}\right ) \tan \left (b x + a\right )^{3} + 2 \, \sqrt {2} \sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}} {\left (\tan \left (b x + a\right )^{2} - 1\right )}}{16 \, b c^{2} \tan \left (b x + a\right )^{3}}, \frac {\sqrt {2} \sqrt {-c} \arctan \left (\frac {\sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}} {\left (\tan \left (b x + a\right )^{2} - 1\right )} \sqrt {-c}}{c \tan \left (b x + a\right )}\right ) \tan \left (b x + a\right )^{3} + \sqrt {2} \sqrt {-\frac {c \tan \left (b x + a\right )^{2}}{\tan \left (b x + a\right )^{2} - 1}} {\left (\tan \left (b x + a\right )^{2} - 1\right )}}{8 \, b c^{2} \tan \left (b x + a\right )^{3}}\right ] \]

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x, algorithm="fricas")

[Out]

[1/16*(sqrt(2)*sqrt(c)*log((c*tan(b*x + a)^3 + 2*sqrt(-c*tan(b*x + a)^2/(tan(b*x + a)^2 - 1))*(tan(b*x + a)^2
- 1)*sqrt(c) - 2*c*tan(b*x + a))/tan(b*x + a)^3)*tan(b*x + a)^3 + 2*sqrt(2)*sqrt(-c*tan(b*x + a)^2/(tan(b*x +
a)^2 - 1))*(tan(b*x + a)^2 - 1))/(b*c^2*tan(b*x + a)^3), 1/8*(sqrt(2)*sqrt(-c)*arctan(sqrt(-c*tan(b*x + a)^2/(
tan(b*x + a)^2 - 1))*(tan(b*x + a)^2 - 1)*sqrt(-c)/(c*tan(b*x + a)))*tan(b*x + a)^3 + sqrt(2)*sqrt(-c*tan(b*x
+ a)^2/(tan(b*x + a)^2 - 1))*(tan(b*x + a)^2 - 1))/(b*c^2*tan(b*x + a)^3)]

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=\int { \frac {\sec \left (2 \, b x + 2 \, a\right )}{\left (c \tan \left (2 \, b x + 2 \, a\right ) \tan \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(2*b*x + 2*a)/(c*tan(2*b*x + 2*a)*tan(b*x + a))^(3/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(2*b*x+2*a)/(c*tan(b*x+a)*tan(2*b*x+2*a))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (2 (a+b x))}{(c \tan (a+b x) \tan (2 (a+b x)))^{3/2}} \, dx=\int \frac {1}{\cos \left (2\,a+2\,b\,x\right )\,{\left (c\,\mathrm {tan}\left (a+b\,x\right )\,\mathrm {tan}\left (2\,a+2\,b\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(1/(cos(2*a + 2*b*x)*(c*tan(a + b*x)*tan(2*a + 2*b*x))^(3/2)),x)

[Out]

int(1/(cos(2*a + 2*b*x)*(c*tan(a + b*x)*tan(2*a + 2*b*x))^(3/2)), x)