\(\int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx\) [218]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 69 \[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=-\frac {e \operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right ) \sin \left (\frac {2 a}{b}\right )}{2 b d}+\frac {e \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b d} \]

[Out]

1/2*e*cos(2*a/b)*Si(2*(a+b*arcsin(d*x+c))/b)/b/d-1/2*e*Ci(2*(a+b*arcsin(d*x+c))/b)*sin(2*a/b)/b/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {4889, 12, 4731, 4491, 3384, 3380, 3383} \[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=\frac {e \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b d}-\frac {e \sin \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b d} \]

[In]

Int[(c*e + d*e*x)/(a + b*ArcSin[c + d*x]),x]

[Out]

-1/2*(e*CosIntegral[(2*(a + b*ArcSin[c + d*x]))/b]*Sin[(2*a)/b])/(b*d) + (e*Cos[(2*a)/b]*SinIntegral[(2*(a + b
*ArcSin[c + d*x]))/b])/(2*b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4731

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sin[-
a/b + x/b]^m*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {e x}{a+b \arcsin (x)} \, dx,x,c+d x\right )}{d} \\ & = \frac {e \text {Subst}\left (\int \frac {x}{a+b \arcsin (x)} \, dx,x,c+d x\right )}{d} \\ & = -\frac {e \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right ) \sin \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{b d} \\ & = -\frac {e \text {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{2 x} \, dx,x,a+b \arcsin (c+d x)\right )}{b d} \\ & = -\frac {e \text {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b d} \\ & = \frac {\left (e \cos \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b d}-\frac {\left (e \sin \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b d} \\ & = -\frac {e \operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right ) \sin \left (\frac {2 a}{b}\right )}{2 b d}+\frac {e \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.88 \[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=\frac {e \left (-\operatorname {CosIntegral}\left (\frac {2 a}{b}+2 \arcsin (c+d x)\right ) \sin \left (\frac {2 a}{b}\right )+\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 a}{b}+2 \arcsin (c+d x)\right )\right )}{2 b d} \]

[In]

Integrate[(c*e + d*e*x)/(a + b*ArcSin[c + d*x]),x]

[Out]

(e*(-(CosIntegral[(2*a)/b + 2*ArcSin[c + d*x]]*Sin[(2*a)/b]) + Cos[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSin[c +
 d*x]]))/(2*b*d)

Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.87

method result size
derivativedivides \(\frac {e \left (\operatorname {Si}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right )-\operatorname {Ci}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right )\right )}{2 d b}\) \(60\)
default \(\frac {e \left (\operatorname {Si}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right )-\operatorname {Ci}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right )\right )}{2 d b}\) \(60\)

[In]

int((d*e*x+c*e)/(a+b*arcsin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/2/d*e*(Si(2*arcsin(d*x+c)+2*a/b)*cos(2*a/b)-Ci(2*arcsin(d*x+c)+2*a/b)*sin(2*a/b))/b

Fricas [F]

\[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=\int { \frac {d e x + c e}{b \arcsin \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c)),x, algorithm="fricas")

[Out]

integral((d*e*x + c*e)/(b*arcsin(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=e \left (\int \frac {c}{a + b \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {d x}{a + b \operatorname {asin}{\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((d*e*x+c*e)/(a+b*asin(d*x+c)),x)

[Out]

e*(Integral(c/(a + b*asin(c + d*x)), x) + Integral(d*x/(a + b*asin(c + d*x)), x))

Maxima [F]

\[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=\int { \frac {d e x + c e}{b \arcsin \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c)),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)/(b*arcsin(d*x + c) + a), x)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.38 \[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=-\frac {e \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (d x + c\right )\right ) \sin \left (\frac {a}{b}\right )}{b d} + \frac {e \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (d x + c\right )\right )}{b d} - \frac {e \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (d x + c\right )\right )}{2 \, b d} \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c)),x, algorithm="giac")

[Out]

-e*cos(a/b)*cos_integral(2*a/b + 2*arcsin(d*x + c))*sin(a/b)/(b*d) + e*cos(a/b)^2*sin_integral(2*a/b + 2*arcsi
n(d*x + c))/(b*d) - 1/2*e*sin_integral(2*a/b + 2*arcsin(d*x + c))/(b*d)

Mupad [F(-1)]

Timed out. \[ \int \frac {c e+d e x}{a+b \arcsin (c+d x)} \, dx=\int \frac {c\,e+d\,e\,x}{a+b\,\mathrm {asin}\left (c+d\,x\right )} \,d x \]

[In]

int((c*e + d*e*x)/(a + b*asin(c + d*x)),x)

[Out]

int((c*e + d*e*x)/(a + b*asin(c + d*x)), x)