\(\int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx\) [222]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 190 \[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=-\frac {e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d (a+b \arcsin (c+d x))}+\frac {e^3 \cos \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}-\frac {e^3 \cos \left (\frac {4 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {4 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}+\frac {e^3 \sin \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}-\frac {e^3 \sin \left (\frac {4 a}{b}\right ) \text {Si}\left (\frac {4 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d} \]

[Out]

1/2*e^3*Ci(2*(a+b*arcsin(d*x+c))/b)*cos(2*a/b)/b^2/d-1/2*e^3*Ci(4*(a+b*arcsin(d*x+c))/b)*cos(4*a/b)/b^2/d+1/2*
e^3*Si(2*(a+b*arcsin(d*x+c))/b)*sin(2*a/b)/b^2/d-1/2*e^3*Si(4*(a+b*arcsin(d*x+c))/b)*sin(4*a/b)/b^2/d-e^3*(d*x
+c)^3*(1-(d*x+c)^2)^(1/2)/b/d/(a+b*arcsin(d*x+c))

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4889, 12, 4727, 3384, 3380, 3383} \[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=\frac {e^3 \cos \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}-\frac {e^3 \cos \left (\frac {4 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {4 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}+\frac {e^3 \sin \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}-\frac {e^3 \sin \left (\frac {4 a}{b}\right ) \text {Si}\left (\frac {4 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}-\frac {e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d (a+b \arcsin (c+d x))} \]

[In]

Int[(c*e + d*e*x)^3/(a + b*ArcSin[c + d*x])^2,x]

[Out]

-((e^3*(c + d*x)^3*Sqrt[1 - (c + d*x)^2])/(b*d*(a + b*ArcSin[c + d*x]))) + (e^3*Cos[(2*a)/b]*CosIntegral[(2*(a
 + b*ArcSin[c + d*x]))/b])/(2*b^2*d) - (e^3*Cos[(4*a)/b]*CosIntegral[(4*(a + b*ArcSin[c + d*x]))/b])/(2*b^2*d)
 + (e^3*Sin[(2*a)/b]*SinIntegral[(2*(a + b*ArcSin[c + d*x]))/b])/(2*b^2*d) - (e^3*Sin[(4*a)/b]*SinIntegral[(4*
(a + b*ArcSin[c + d*x]))/b])/(2*b^2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4727

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 - c^2*x^2]*((a + b*ArcSin
[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[1/(b^2*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[x^(n + 1), Sin[
-a/b + x/b]^(m - 1)*(m - (m + 1)*Sin[-a/b + x/b]^2), x], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x]
&& IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {e^3 x^3}{(a+b \arcsin (x))^2} \, dx,x,c+d x\right )}{d} \\ & = \frac {e^3 \text {Subst}\left (\int \frac {x^3}{(a+b \arcsin (x))^2} \, dx,x,c+d x\right )}{d} \\ & = -\frac {e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d (a+b \arcsin (c+d x))}+\frac {e^3 \text {Subst}\left (\int \left (-\frac {\cos \left (\frac {4 a}{b}-\frac {4 x}{b}\right )}{2 x}+\frac {\cos \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{2 x}\right ) \, dx,x,a+b \arcsin (c+d x)\right )}{b^2 d} \\ & = -\frac {e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d (a+b \arcsin (c+d x))}-\frac {e^3 \text {Subst}\left (\int \frac {\cos \left (\frac {4 a}{b}-\frac {4 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b^2 d}+\frac {e^3 \text {Subst}\left (\int \frac {\cos \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b^2 d} \\ & = -\frac {e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d (a+b \arcsin (c+d x))}+\frac {\left (e^3 \cos \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b^2 d}-\frac {\left (e^3 \cos \left (\frac {4 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {4 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b^2 d}+\frac {\left (e^3 \sin \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b^2 d}-\frac {\left (e^3 \sin \left (\frac {4 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {4 x}{b}\right )}{x} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b^2 d} \\ & = -\frac {e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d (a+b \arcsin (c+d x))}+\frac {e^3 \cos \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}-\frac {e^3 \cos \left (\frac {4 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {4 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}+\frac {e^3 \sin \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d}-\frac {e^3 \sin \left (\frac {4 a}{b}\right ) \text {Si}\left (\frac {4 (a+b \arcsin (c+d x))}{b}\right )}{2 b^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.34 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.16 \[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=-\frac {e^3 \left (\frac {2 b (c+d x)^3 \sqrt {1-(c+d x)^2}}{a+b \arcsin (c+d x)}-4 \cos \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (2 \left (\frac {a}{b}+\arcsin (c+d x)\right )\right )+\cos \left (\frac {4 a}{b}\right ) \operatorname {CosIntegral}\left (4 \left (\frac {a}{b}+\arcsin (c+d x)\right )\right )+3 \log (a+b \arcsin (c+d x))-4 \sin \left (\frac {2 a}{b}\right ) \text {Si}\left (2 \left (\frac {a}{b}+\arcsin (c+d x)\right )\right )+3 \left (\cos \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (2 \left (\frac {a}{b}+\arcsin (c+d x)\right )\right )-\log (a+b \arcsin (c+d x))+\sin \left (\frac {2 a}{b}\right ) \text {Si}\left (2 \left (\frac {a}{b}+\arcsin (c+d x)\right )\right )\right )+\sin \left (\frac {4 a}{b}\right ) \text {Si}\left (4 \left (\frac {a}{b}+\arcsin (c+d x)\right )\right )\right )}{2 b^2 d} \]

[In]

Integrate[(c*e + d*e*x)^3/(a + b*ArcSin[c + d*x])^2,x]

[Out]

-1/2*(e^3*((2*b*(c + d*x)^3*Sqrt[1 - (c + d*x)^2])/(a + b*ArcSin[c + d*x]) - 4*Cos[(2*a)/b]*CosIntegral[2*(a/b
 + ArcSin[c + d*x])] + Cos[(4*a)/b]*CosIntegral[4*(a/b + ArcSin[c + d*x])] + 3*Log[a + b*ArcSin[c + d*x]] - 4*
Sin[(2*a)/b]*SinIntegral[2*(a/b + ArcSin[c + d*x])] + 3*(Cos[(2*a)/b]*CosIntegral[2*(a/b + ArcSin[c + d*x])] -
 Log[a + b*ArcSin[c + d*x]] + Sin[(2*a)/b]*SinIntegral[2*(a/b + ArcSin[c + d*x])]) + Sin[(4*a)/b]*SinIntegral[
4*(a/b + ArcSin[c + d*x])]))/(b^2*d)

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 280, normalized size of antiderivative = 1.47

method result size
derivativedivides \(\frac {e^{3} \left (4 \arcsin \left (d x +c \right ) \operatorname {Ci}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) b -4 \arcsin \left (d x +c \right ) \sin \left (\frac {4 a}{b}\right ) \operatorname {Si}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) b -4 \arcsin \left (d x +c \right ) \cos \left (\frac {4 a}{b}\right ) \operatorname {Ci}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) b +4 \arcsin \left (d x +c \right ) \sin \left (\frac {2 a}{b}\right ) \operatorname {Si}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) b +4 \,\operatorname {Ci}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) a -4 \sin \left (\frac {4 a}{b}\right ) \operatorname {Si}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) a -4 \cos \left (\frac {4 a}{b}\right ) \operatorname {Ci}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) a +4 \sin \left (\frac {2 a}{b}\right ) \operatorname {Si}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) a +\sin \left (4 \arcsin \left (d x +c \right )\right ) b -2 \sin \left (2 \arcsin \left (d x +c \right )\right ) b \right )}{8 d \left (a +b \arcsin \left (d x +c \right )\right ) b^{2}}\) \(280\)
default \(\frac {e^{3} \left (4 \arcsin \left (d x +c \right ) \operatorname {Ci}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) b -4 \arcsin \left (d x +c \right ) \sin \left (\frac {4 a}{b}\right ) \operatorname {Si}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) b -4 \arcsin \left (d x +c \right ) \cos \left (\frac {4 a}{b}\right ) \operatorname {Ci}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) b +4 \arcsin \left (d x +c \right ) \sin \left (\frac {2 a}{b}\right ) \operatorname {Si}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) b +4 \,\operatorname {Ci}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) a -4 \sin \left (\frac {4 a}{b}\right ) \operatorname {Si}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) a -4 \cos \left (\frac {4 a}{b}\right ) \operatorname {Ci}\left (4 \arcsin \left (d x +c \right )+\frac {4 a}{b}\right ) a +4 \sin \left (\frac {2 a}{b}\right ) \operatorname {Si}\left (2 \arcsin \left (d x +c \right )+\frac {2 a}{b}\right ) a +\sin \left (4 \arcsin \left (d x +c \right )\right ) b -2 \sin \left (2 \arcsin \left (d x +c \right )\right ) b \right )}{8 d \left (a +b \arcsin \left (d x +c \right )\right ) b^{2}}\) \(280\)

[In]

int((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/8/d*e^3*(4*arcsin(d*x+c)*Ci(2*arcsin(d*x+c)+2*a/b)*cos(2*a/b)*b-4*arcsin(d*x+c)*sin(4*a/b)*Si(4*arcsin(d*x+c
)+4*a/b)*b-4*arcsin(d*x+c)*cos(4*a/b)*Ci(4*arcsin(d*x+c)+4*a/b)*b+4*arcsin(d*x+c)*sin(2*a/b)*Si(2*arcsin(d*x+c
)+2*a/b)*b+4*Ci(2*arcsin(d*x+c)+2*a/b)*cos(2*a/b)*a-4*sin(4*a/b)*Si(4*arcsin(d*x+c)+4*a/b)*a-4*cos(4*a/b)*Ci(4
*arcsin(d*x+c)+4*a/b)*a+4*sin(2*a/b)*Si(2*arcsin(d*x+c)+2*a/b)*a+sin(4*arcsin(d*x+c))*b-2*sin(2*arcsin(d*x+c))
*b)/(a+b*arcsin(d*x+c))/b^2

Fricas [F]

\[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=\int { \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((d^3*e^3*x^3 + 3*c*d^2*e^3*x^2 + 3*c^2*d*e^3*x + c^3*e^3)/(b^2*arcsin(d*x + c)^2 + 2*a*b*arcsin(d*x +
 c) + a^2), x)

Sympy [F]

\[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=e^{3} \left (\int \frac {c^{3}}{a^{2} + 2 a b \operatorname {asin}{\left (c + d x \right )} + b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}\, dx + \int \frac {d^{3} x^{3}}{a^{2} + 2 a b \operatorname {asin}{\left (c + d x \right )} + b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}\, dx + \int \frac {3 c d^{2} x^{2}}{a^{2} + 2 a b \operatorname {asin}{\left (c + d x \right )} + b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}\, dx + \int \frac {3 c^{2} d x}{a^{2} + 2 a b \operatorname {asin}{\left (c + d x \right )} + b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((d*e*x+c*e)**3/(a+b*asin(d*x+c))**2,x)

[Out]

e**3*(Integral(c**3/(a**2 + 2*a*b*asin(c + d*x) + b**2*asin(c + d*x)**2), x) + Integral(d**3*x**3/(a**2 + 2*a*
b*asin(c + d*x) + b**2*asin(c + d*x)**2), x) + Integral(3*c*d**2*x**2/(a**2 + 2*a*b*asin(c + d*x) + b**2*asin(
c + d*x)**2), x) + Integral(3*c**2*d*x/(a**2 + 2*a*b*asin(c + d*x) + b**2*asin(c + d*x)**2), x))

Maxima [F]

\[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=\int { \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^2,x, algorithm="maxima")

[Out]

-((d^3*e^3*x^3 + 3*c*d^2*e^3*x^2 + 3*c^2*d*e^3*x + c^3*e^3)*sqrt(d*x + c + 1)*sqrt(-d*x - c + 1) - (b^2*d*arct
an2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1)) + a*b*d)*integrate((4*d^4*e^3*x^4 + 16*c*d^3*e^3*x^3 + 3*(8
*c^2 - 1)*d^2*e^3*x^2 + 2*(8*c^3 - 3*c)*d*e^3*x + (4*c^4 - 3*c^2)*e^3)*sqrt(d*x + c + 1)*sqrt(-d*x - c + 1)/(a
*b*d^2*x^2 + 2*a*b*c*d*x + a*b*c^2 - a*b + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 - b^2)*arctan2(d*x + c, sqrt(d
*x + c + 1)*sqrt(-d*x - c + 1))), x))/(b^2*d*arctan2(d*x + c, sqrt(d*x + c + 1)*sqrt(-d*x - c + 1)) + a*b*d)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 928 vs. \(2 (180) = 360\).

Time = 0.41 (sec) , antiderivative size = 928, normalized size of antiderivative = 4.88 \[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=\text {Too large to display} \]

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^2,x, algorithm="giac")

[Out]

-4*b*e^3*arcsin(d*x + c)*cos(a/b)^4*cos_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d)
- 4*b*e^3*arcsin(d*x + c)*cos(a/b)^3*sin(a/b)*sin_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) +
 a*b^2*d) - 4*a*e^3*cos(a/b)^4*cos_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) - 4*a
*e^3*cos(a/b)^3*sin(a/b)*sin_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + 4*b*e^3*a
rcsin(d*x + c)*cos(a/b)^2*cos_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + b*e^3*ar
csin(d*x + c)*cos(a/b)^2*cos_integral(2*a/b + 2*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + 2*b*e^3*a
rcsin(d*x + c)*cos(a/b)*sin(a/b)*sin_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + b
*e^3*arcsin(d*x + c)*cos(a/b)*sin(a/b)*sin_integral(2*a/b + 2*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*
d) + 4*a*e^3*cos(a/b)^2*cos_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + a*e^3*cos(
a/b)^2*cos_integral(2*a/b + 2*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + 2*a*e^3*cos(a/b)*sin(a/b)*s
in_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + a*e^3*cos(a/b)*sin(a/b)*sin_integra
l(2*a/b + 2*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + (-(d*x + c)^2 + 1)^(3/2)*(d*x + c)*b*e^3/(b^3
*d*arcsin(d*x + c) + a*b^2*d) - 1/2*b*e^3*arcsin(d*x + c)*cos_integral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsi
n(d*x + c) + a*b^2*d) - 1/2*b*e^3*arcsin(d*x + c)*cos_integral(2*a/b + 2*arcsin(d*x + c))/(b^3*d*arcsin(d*x +
c) + a*b^2*d) - sqrt(-(d*x + c)^2 + 1)*(d*x + c)*b*e^3/(b^3*d*arcsin(d*x + c) + a*b^2*d) - 1/2*a*e^3*cos_integ
ral(4*a/b + 4*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) - 1/2*a*e^3*cos_integral(2*a/b + 2*arcsin(d*x
 + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d)

Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^3}{(a+b \arcsin (c+d x))^2} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^3}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((c*e + d*e*x)^3/(a + b*asin(c + d*x))^2,x)

[Out]

int((c*e + d*e*x)^3/(a + b*asin(c + d*x))^2, x)