\(\int (a+b \arcsin (c+d x))^{3/2} \, dx\) [248]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 175 \[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=\frac {3 b \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{2 d}+\frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d}-\frac {3 b^{3/2} \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 d}-\frac {3 b^{3/2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 d} \]

[Out]

(d*x+c)*(a+b*arcsin(d*x+c))^(3/2)/d-3/4*b^(3/2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b
^(1/2))*2^(1/2)*Pi^(1/2)/d-3/4*b^(3/2)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2
^(1/2)*Pi^(1/2)/d+3/2*b*(1-(d*x+c)^2)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.643, Rules used = {4887, 4715, 4767, 4719, 3387, 3386, 3432, 3385, 3433} \[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=-\frac {3 \sqrt {\frac {\pi }{2}} b^{3/2} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 d}-\frac {3 \sqrt {\frac {\pi }{2}} b^{3/2} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 d}+\frac {3 b \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{2 d}+\frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d} \]

[In]

Int[(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(3*b*Sqrt[1 - (c + d*x)^2]*Sqrt[a + b*ArcSin[c + d*x]])/(2*d) + ((c + d*x)*(a + b*ArcSin[c + d*x])^(3/2))/d -
(3*b^(3/2)*Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(2*d) - (3*b^(3/2)*
Sqrt[Pi/2]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(2*d)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4715

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
x*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4719

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[-a/b + x/b], x], x,
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4887

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSin[x])^n, x],
 x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int (a+b \arcsin (x))^{3/2} \, dx,x,c+d x\right )}{d} \\ & = \frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d}-\frac {(3 b) \text {Subst}\left (\int \frac {x \sqrt {a+b \arcsin (x)}}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{2 d} \\ & = \frac {3 b \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{2 d}+\frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d}-\frac {\left (3 b^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b \arcsin (x)}} \, dx,x,c+d x\right )}{4 d} \\ & = \frac {3 b \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{2 d}+\frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d}-\frac {(3 b) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 d} \\ & = \frac {3 b \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{2 d}+\frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d}-\frac {\left (3 b \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 d}-\frac {\left (3 b \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 d} \\ & = \frac {3 b \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{2 d}+\frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d}-\frac {\left (3 b \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{2 d}-\frac {\left (3 b \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{2 d} \\ & = \frac {3 b \sqrt {1-(c+d x)^2} \sqrt {a+b \arcsin (c+d x)}}{2 d}+\frac {(c+d x) (a+b \arcsin (c+d x))^{3/2}}{d}-\frac {3 b^{3/2} \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 d}-\frac {3 b^{3/2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.79 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.78 \[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=\frac {a b e^{-\frac {i a}{b}} \left (\sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {3}{2},-\frac {i (a+b \arcsin (c+d x))}{b}\right )+e^{\frac {2 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {3}{2},\frac {i (a+b \arcsin (c+d x))}{b}\right )\right )}{2 d \sqrt {a+b \arcsin (c+d x)}}+\frac {\sqrt {b} \left (2 \sqrt {b} \sqrt {a+b \arcsin (c+d x)} \left (3 \sqrt {1-(c+d x)^2}+2 (c+d x) \arcsin (c+d x)\right )-\sqrt {2 \pi } \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \left (3 b \cos \left (\frac {a}{b}\right )+2 a \sin \left (\frac {a}{b}\right )\right )+\sqrt {2 \pi } \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \left (2 a \cos \left (\frac {a}{b}\right )-3 b \sin \left (\frac {a}{b}\right )\right )\right )}{4 d} \]

[In]

Integrate[(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(a*b*(Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[3/2, ((-I)*(a + b*ArcSin[c + d*x]))/b] + E^(((2*I)*a)/b)*Sq
rt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[3/2, (I*(a + b*ArcSin[c + d*x]))/b]))/(2*d*E^((I*a)/b)*Sqrt[a + b*ArcS
in[c + d*x]]) + (Sqrt[b]*(2*Sqrt[b]*Sqrt[a + b*ArcSin[c + d*x]]*(3*Sqrt[1 - (c + d*x)^2] + 2*(c + d*x)*ArcSin[
c + d*x]) - Sqrt[2*Pi]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*(3*b*Cos[a/b] + 2*a*Sin[a/b]
) + Sqrt[2*Pi]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*(2*a*Cos[a/b] - 3*b*Sin[a/b])))/(4*d
)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(303\) vs. \(2(139)=278\).

Time = 0.35 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.74

method result size
default \(-\frac {3 \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, b^{2}-3 \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, b^{2}+4 \arcsin \left (d x +c \right )^{2} \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) b^{2}+8 \arcsin \left (d x +c \right ) \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a b -6 \arcsin \left (d x +c \right ) \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) b^{2}+4 \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a^{2}-6 \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a b}{4 d \sqrt {a +b \arcsin \left (d x +c \right )}}\) \(304\)

[In]

int((a+b*arcsin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d*(3*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/
b)*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*b^2-3*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/
2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*b^2+4*arcsin(d*x+c)^2*sin(-(a+b*arcsin(d*x+c))/b
+a/b)*b^2+8*arcsin(d*x+c)*sin(-(a+b*arcsin(d*x+c))/b+a/b)*a*b-6*arcsin(d*x+c)*cos(-(a+b*arcsin(d*x+c))/b+a/b)*
b^2+4*sin(-(a+b*arcsin(d*x+c))/b+a/b)*a^2-6*cos(-(a+b*arcsin(d*x+c))/b+a/b)*a*b)/(a+b*arcsin(d*x+c))^(1/2)

Fricas [F(-2)]

Exception generated. \[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=\int \left (a + b \operatorname {asin}{\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx \]

[In]

integrate((a+b*asin(d*x+c))**(3/2),x)

[Out]

Integral((a + b*asin(c + d*x))**(3/2), x)

Maxima [F]

\[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=\int { {\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*arcsin(d*x + c) + a)^(3/2), x)

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.90 (sec) , antiderivative size = 1061, normalized size of antiderivative = 6.06 \[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate((a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*sqrt(pi)*a^2*b^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*
arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) + 1/2*I*sqrt(2)*sqr
t(pi)*a*b^3*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) +
 a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) + 1/2*sqrt(2)*sqrt(pi)*a^2*b^2*erf(1
/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b
)*e^(-I*a/b)/((-I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) - 1/2*I*sqrt(2)*sqrt(pi)*a*b^3*erf(1/2*I*sqrt(2)*sqr
t(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-
I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) - 1/2*I*sqrt(2)*sqrt(pi)*a*b^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x
+ c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)
) + b*sqrt(abs(b)))*d) + 3/8*sqrt(2)*sqrt(pi)*b^3*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b))
- 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d)
+ 1/2*I*sqrt(2)*sqrt(pi)*a*b^2*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b
*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) + 3/8*sqrt(2)*sqrt
(pi)*b^3*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*
sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) - sqrt(pi)*a^2*b*erf(-1/2*I*sqrt(2)*sqrt
(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*s
qrt(2)*b^2/sqrt(abs(b)) + sqrt(2)*b*sqrt(abs(b)))*d) - sqrt(pi)*a^2*b*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c)
 + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*sqrt(2)*b^2/sqrt(
abs(b)) + sqrt(2)*b*sqrt(abs(b)))*d) - 1/2*I*sqrt(b*arcsin(d*x + c) + a)*b*arcsin(d*x + c)*e^(I*arcsin(d*x + c
))/d + 1/2*I*sqrt(b*arcsin(d*x + c) + a)*b*arcsin(d*x + c)*e^(-I*arcsin(d*x + c))/d - 1/2*I*sqrt(b*arcsin(d*x
+ c) + a)*a*e^(I*arcsin(d*x + c))/d + 3/4*sqrt(b*arcsin(d*x + c) + a)*b*e^(I*arcsin(d*x + c))/d + 1/2*I*sqrt(b
*arcsin(d*x + c) + a)*a*e^(-I*arcsin(d*x + c))/d + 3/4*sqrt(b*arcsin(d*x + c) + a)*b*e^(-I*arcsin(d*x + c))/d

Mupad [F(-1)]

Timed out. \[ \int (a+b \arcsin (c+d x))^{3/2} \, dx=\int {\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int((a + b*asin(c + d*x))^(3/2),x)

[Out]

int((a + b*asin(c + d*x))^(3/2), x)