\(\int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx\) [285]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-2)]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 81 \[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=\frac {2 \sqrt {e (c+d x)} (a+b \arcsin (c+d x))}{d e}+\frac {4 b \sqrt {e (c+d x)} E\left (\left .\arcsin \left (\frac {\sqrt {1-c-d x}}{\sqrt {2}}\right )\right |2\right )}{d e \sqrt {c+d x}} \]

[Out]

2*(a+b*arcsin(d*x+c))*(e*(d*x+c))^(1/2)/d/e+4*b*EllipticE(1/2*(-d*x-c+1)^(1/2)*2^(1/2),2^(1/2))*(e*(d*x+c))^(1
/2)/d/e/(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4889, 4723, 326, 324, 435} \[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=\frac {2 \sqrt {e (c+d x)} (a+b \arcsin (c+d x))}{d e}+\frac {4 b \sqrt {e (c+d x)} E\left (\left .\arcsin \left (\frac {\sqrt {-c-d x+1}}{\sqrt {2}}\right )\right |2\right )}{d e \sqrt {c+d x}} \]

[In]

Int[(a + b*ArcSin[c + d*x])/Sqrt[c*e + d*e*x],x]

[Out]

(2*Sqrt[e*(c + d*x)]*(a + b*ArcSin[c + d*x]))/(d*e) + (4*b*Sqrt[e*(c + d*x)]*EllipticE[ArcSin[Sqrt[1 - c - d*x
]/Sqrt[2]], 2])/(d*e*Sqrt[c + d*x])

Rule 324

Int[Sqrt[x_]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Dist[-2/(Sqrt[a]*(-b/a)^(3/4)), Subst[Int[Sqrt[1 - 2*x^2]
/Sqrt[1 - x^2], x], x, Sqrt[1 - Sqrt[-b/a]*x]/Sqrt[2]], x] /; FreeQ[{a, b}, x] && GtQ[-b/a, 0] && GtQ[a, 0]

Rule 326

Int[Sqrt[(c_)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[c*x]/Sqrt[x], Int[Sqrt[x]/Sqrt[a + b*x^2
], x], x] /; FreeQ[{a, b, c}, x] && GtQ[-b/a, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a+b \arcsin (x)}{\sqrt {e x}} \, dx,x,c+d x\right )}{d} \\ & = \frac {2 \sqrt {e (c+d x)} (a+b \arcsin (c+d x))}{d e}-\frac {(2 b) \text {Subst}\left (\int \frac {\sqrt {e x}}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{d e} \\ & = \frac {2 \sqrt {e (c+d x)} (a+b \arcsin (c+d x))}{d e}-\frac {\left (2 b \sqrt {e (c+d x)}\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{d e \sqrt {c+d x}} \\ & = \frac {2 \sqrt {e (c+d x)} (a+b \arcsin (c+d x))}{d e}+\frac {\left (4 b \sqrt {e (c+d x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1-2 x^2}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-c-d x}}{\sqrt {2}}\right )}{d e \sqrt {c+d x}} \\ & = \frac {2 \sqrt {e (c+d x)} (a+b \arcsin (c+d x))}{d e}+\frac {4 b \sqrt {e (c+d x)} E\left (\left .\arcsin \left (\frac {\sqrt {1-c-d x}}{\sqrt {2}}\right )\right |2\right )}{d e \sqrt {c+d x}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.04 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.73 \[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=-\frac {2 \sqrt {e (c+d x)} \left (-3 (a+b \arcsin (c+d x))+2 b (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},(c+d x)^2\right )\right )}{3 d e} \]

[In]

Integrate[(a + b*ArcSin[c + d*x])/Sqrt[c*e + d*e*x],x]

[Out]

(-2*Sqrt[e*(c + d*x)]*(-3*(a + b*ArcSin[c + d*x]) + 2*b*(c + d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, (c + d*x)^2
]))/(3*d*e)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.77 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.84

method result size
derivativedivides \(\frac {2 \sqrt {d e x +c e}\, a +2 b \left (\sqrt {d e x +c e}\, \arcsin \left (\frac {d e x +c e}{e}\right )+\frac {2 \sqrt {1-\frac {d e x +c e}{e}}\, \sqrt {1+\frac {d e x +c e}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )\right )}{\sqrt {\frac {1}{e}}\, \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{d e}\) \(149\)
default \(\frac {2 \sqrt {d e x +c e}\, a +2 b \left (\sqrt {d e x +c e}\, \arcsin \left (\frac {d e x +c e}{e}\right )+\frac {2 \sqrt {1-\frac {d e x +c e}{e}}\, \sqrt {1+\frac {d e x +c e}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )\right )}{\sqrt {\frac {1}{e}}\, \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{d e}\) \(149\)
parts \(\frac {2 a \sqrt {d e x +c e}}{d e}+\frac {2 b \left (\sqrt {d e x +c e}\, \arcsin \left (\frac {d e x +c e}{e}\right )+\frac {2 \sqrt {1-\frac {d e x +c e}{e}}\, \sqrt {1+\frac {d e x +c e}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )\right )}{\sqrt {\frac {1}{e}}\, \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{e d}\) \(155\)

[In]

int((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d/e*((d*e*x+c*e)^(1/2)*a+b*((d*e*x+c*e)^(1/2)*arcsin(1/e*(d*e*x+c*e))+2/(1/e)^(1/2)*(1-1/e*(d*e*x+c*e))^(1/2
)*(1+1/e*(d*e*x+c*e))^(1/2)/(-1/e^2*(d*e*x+c*e)^2+1)^(1/2)*(EllipticF((d*e*x+c*e)^(1/2)*(1/e)^(1/2),I)-Ellipti
cE((d*e*x+c*e)^(1/2)*(1/e)^(1/2),I))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.84 \[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=-\frac {2 \, {\left (2 \, \sqrt {-d^{3} e} b {\rm weierstrassZeta}\left (\frac {4}{d^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right ) - \sqrt {d e x + c e} {\left (b d \arcsin \left (d x + c\right ) + a d\right )}\right )}}{d^{2} e} \]

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(1/2),x, algorithm="fricas")

[Out]

-2*(2*sqrt(-d^3*e)*b*weierstrassZeta(4/d^2, 0, weierstrassPInverse(4/d^2, 0, (d*x + c)/d)) - sqrt(d*e*x + c*e)
*(b*d*arcsin(d*x + c) + a*d))/(d^2*e)

Sympy [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*asin(d*x+c))/(d*e*x+c*e)**(1/2),x)

[Out]

Exception raised: TypeError >> Invalid comparison of non-real zoo

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=\int { \frac {b \arcsin \left (d x + c\right ) + a}{\sqrt {d e x + c e}} \,d x } \]

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)/sqrt(d*e*x + c*e), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c+d x)}{\sqrt {c e+d e x}} \, dx=\int \frac {a+b\,\mathrm {asin}\left (c+d\,x\right )}{\sqrt {c\,e+d\,e\,x}} \,d x \]

[In]

int((a + b*asin(c + d*x))/(c*e + d*e*x)^(1/2),x)

[Out]

int((a + b*asin(c + d*x))/(c*e + d*e*x)^(1/2), x)