\(\int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx\) [288]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 102 \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=-\frac {4 b \sqrt {1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}-\frac {2 (a+b \arcsin (c+d x))}{5 d e (e (c+d x))^{5/2}}+\frac {4 b \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{15 d e^{7/2}} \]

[Out]

-2/5*(a+b*arcsin(d*x+c))/d/e/(e*(d*x+c))^(5/2)+4/15*b*EllipticF((e*(d*x+c))^(1/2)/e^(1/2),I)/d/e^(7/2)-4/15*b*
(1-(d*x+c)^2)^(1/2)/d/e^2/(e*(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4889, 4723, 331, 335, 227} \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=-\frac {2 (a+b \arcsin (c+d x))}{5 d e (e (c+d x))^{5/2}}+\frac {4 b \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{15 d e^{7/2}}-\frac {4 b \sqrt {1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}} \]

[In]

Int[(a + b*ArcSin[c + d*x])/(c*e + d*e*x)^(7/2),x]

[Out]

(-4*b*Sqrt[1 - (c + d*x)^2])/(15*d*e^2*(e*(c + d*x))^(3/2)) - (2*(a + b*ArcSin[c + d*x]))/(5*d*e*(e*(c + d*x))
^(5/2)) + (4*b*EllipticF[ArcSin[Sqrt[e*(c + d*x)]/Sqrt[e]], -1])/(15*d*e^(7/2))

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a+b \arcsin (x)}{(e x)^{7/2}} \, dx,x,c+d x\right )}{d} \\ & = -\frac {2 (a+b \arcsin (c+d x))}{5 d e (e (c+d x))^{5/2}}+\frac {(2 b) \text {Subst}\left (\int \frac {1}{(e x)^{5/2} \sqrt {1-x^2}} \, dx,x,c+d x\right )}{5 d e} \\ & = -\frac {4 b \sqrt {1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}-\frac {2 (a+b \arcsin (c+d x))}{5 d e (e (c+d x))^{5/2}}+\frac {(2 b) \text {Subst}\left (\int \frac {1}{\sqrt {e x} \sqrt {1-x^2}} \, dx,x,c+d x\right )}{15 d e^3} \\ & = -\frac {4 b \sqrt {1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}-\frac {2 (a+b \arcsin (c+d x))}{5 d e (e (c+d x))^{5/2}}+\frac {(4 b) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{e^2}}} \, dx,x,\sqrt {e (c+d x)}\right )}{15 d e^4} \\ & = -\frac {4 b \sqrt {1-(c+d x)^2}}{15 d e^2 (e (c+d x))^{3/2}}-\frac {2 (a+b \arcsin (c+d x))}{5 d e (e (c+d x))^{5/2}}+\frac {4 b \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{15 d e^{7/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.04 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.58 \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=\frac {-6 (a+b \arcsin (c+d x))-4 b (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},(c+d x)^2\right )}{15 d e (e (c+d x))^{5/2}} \]

[In]

Integrate[(a + b*ArcSin[c + d*x])/(c*e + d*e*x)^(7/2),x]

[Out]

(-6*(a + b*ArcSin[c + d*x]) - 4*b*(c + d*x)*Hypergeometric2F1[-3/4, 1/2, 1/4, (c + d*x)^2])/(15*d*e*(e*(c + d*
x))^(5/2))

Maple [A] (verified)

Time = 2.10 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.66

method result size
derivativedivides \(\frac {-\frac {2 a}{5 \left (d e x +c e \right )^{\frac {5}{2}}}+2 b \left (-\frac {\arcsin \left (\frac {d e x +c e}{e}\right )}{5 \left (d e x +c e \right )^{\frac {5}{2}}}+\frac {-\frac {2 \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{15 \left (d e x +c e \right )^{\frac {3}{2}}}+\frac {2 \sqrt {1-\frac {d e x +c e}{e}}\, \sqrt {1+\frac {d e x +c e}{e}}\, \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )}{15 e^{2} \sqrt {\frac {1}{e}}\, \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}}{e}\right )}{d e}\) \(169\)
default \(\frac {-\frac {2 a}{5 \left (d e x +c e \right )^{\frac {5}{2}}}+2 b \left (-\frac {\arcsin \left (\frac {d e x +c e}{e}\right )}{5 \left (d e x +c e \right )^{\frac {5}{2}}}+\frac {-\frac {2 \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{15 \left (d e x +c e \right )^{\frac {3}{2}}}+\frac {2 \sqrt {1-\frac {d e x +c e}{e}}\, \sqrt {1+\frac {d e x +c e}{e}}\, \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )}{15 e^{2} \sqrt {\frac {1}{e}}\, \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}}{e}\right )}{d e}\) \(169\)
parts \(-\frac {2 a}{5 \left (d e x +c e \right )^{\frac {5}{2}} d e}+\frac {2 b \left (-\frac {\arcsin \left (\frac {d e x +c e}{e}\right )}{5 \left (d e x +c e \right )^{\frac {5}{2}}}+\frac {-\frac {2 \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{15 \left (d e x +c e \right )^{\frac {3}{2}}}+\frac {2 \sqrt {1-\frac {d e x +c e}{e}}\, \sqrt {1+\frac {d e x +c e}{e}}\, \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {1}{e}}, i\right )}{15 e^{2} \sqrt {\frac {1}{e}}\, \sqrt {-\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}}{e}\right )}{e d}\) \(174\)

[In]

int((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/d/e*(-1/5*a/(d*e*x+c*e)^(5/2)+b*(-1/5/(d*e*x+c*e)^(5/2)*arcsin(1/e*(d*e*x+c*e))+2/5/e*(-1/3*(-1/e^2*(d*e*x+c
*e)^2+1)^(1/2)/(d*e*x+c*e)^(3/2)+1/3/e^2/(1/e)^(1/2)*(1-1/e*(d*e*x+c*e))^(1/2)*(1+1/e*(d*e*x+c*e))^(1/2)/(-1/e
^2*(d*e*x+c*e)^2+1)^(1/2)*EllipticF((d*e*x+c*e)^(1/2)*(1/e)^(1/2),I))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.72 \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=-\frac {2 \, {\left (2 \, {\left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3}\right )} \sqrt {-d^{3} e} {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right ) + {\left (3 \, b d^{2} \arcsin \left (d x + c\right ) + 3 \, a d^{2} + 2 \, {\left (b d^{3} x + b c d^{2}\right )} \sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1}\right )} \sqrt {d e x + c e}\right )}}{15 \, {\left (d^{6} e^{4} x^{3} + 3 \, c d^{5} e^{4} x^{2} + 3 \, c^{2} d^{4} e^{4} x + c^{3} d^{3} e^{4}\right )}} \]

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x, algorithm="fricas")

[Out]

-2/15*(2*(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3)*sqrt(-d^3*e)*weierstrassPInverse(4/d^2, 0, (d*x + c
)/d) + (3*b*d^2*arcsin(d*x + c) + 3*a*d^2 + 2*(b*d^3*x + b*c*d^2)*sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1))*sqrt(d*e
*x + c*e))/(d^6*e^4*x^3 + 3*c*d^5*e^4*x^2 + 3*c^2*d^4*e^4*x + c^3*d^3*e^4)

Sympy [F]

\[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=\int \frac {a + b \operatorname {asin}{\left (c + d x \right )}}{\left (e \left (c + d x\right )\right )^{\frac {7}{2}}}\, dx \]

[In]

integrate((a+b*asin(d*x+c))/(d*e*x+c*e)**(7/2),x)

[Out]

Integral((a + b*asin(c + d*x))/(e*(c + d*x))**(7/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=\int { \frac {b \arcsin \left (d x + c\right ) + a}{{\left (d e x + c e\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*arcsin(d*x+c))/(d*e*x+c*e)^(7/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)/(d*e*x + c*e)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c+d x)}{(c e+d e x)^{7/2}} \, dx=\int \frac {a+b\,\mathrm {asin}\left (c+d\,x\right )}{{\left (c\,e+d\,e\,x\right )}^{7/2}} \,d x \]

[In]

int((a + b*asin(c + d*x))/(c*e + d*e*x)^(7/2),x)

[Out]

int((a + b*asin(c + d*x))/(c*e + d*e*x)^(7/2), x)