\(\int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx\) [294]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 130 \[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\frac {2 (e (c+d x))^{3/2} (a+b \arcsin (c+d x))^2}{3 d e}-\frac {8 b (e (c+d x))^{5/2} (a+b \arcsin (c+d x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},(c+d x)^2\right )}{15 d e^2}+\frac {16 b^2 (e (c+d x))^{7/2} \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};(c+d x)^2\right )}{105 d e^3} \]

[Out]

2/3*(e*(d*x+c))^(3/2)*(a+b*arcsin(d*x+c))^2/d/e-8/15*b*(e*(d*x+c))^(5/2)*(a+b*arcsin(d*x+c))*hypergeom([1/2, 5
/4],[9/4],(d*x+c)^2)/d/e^2+16/105*b^2*(e*(d*x+c))^(7/2)*hypergeom([1, 7/4, 7/4],[9/4, 11/4],(d*x+c)^2)/d/e^3

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {4889, 4723, 4805} \[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\frac {16 b^2 (e (c+d x))^{7/2} \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};(c+d x)^2\right )}{105 d e^3}-\frac {8 b (e (c+d x))^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},(c+d x)^2\right ) (a+b \arcsin (c+d x))}{15 d e^2}+\frac {2 (e (c+d x))^{3/2} (a+b \arcsin (c+d x))^2}{3 d e} \]

[In]

Int[Sqrt[c*e + d*e*x]*(a + b*ArcSin[c + d*x])^2,x]

[Out]

(2*(e*(c + d*x))^(3/2)*(a + b*ArcSin[c + d*x])^2)/(3*d*e) - (8*b*(e*(c + d*x))^(5/2)*(a + b*ArcSin[c + d*x])*H
ypergeometric2F1[1/2, 5/4, 9/4, (c + d*x)^2])/(15*d*e^2) + (16*b^2*(e*(c + d*x))^(7/2)*HypergeometricPFQ[{1, 7
/4, 7/4}, {9/4, 11/4}, (c + d*x)^2])/(105*d*e^3)

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4805

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)
^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (1 +
m)/2, (3 + m)/2, c^2*x^2], x] - Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d +
 e*x^2]]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2], x] /; FreeQ[{a, b, c, d, e,
f, m}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[m]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \sqrt {e x} (a+b \arcsin (x))^2 \, dx,x,c+d x\right )}{d} \\ & = \frac {2 (e (c+d x))^{3/2} (a+b \arcsin (c+d x))^2}{3 d e}-\frac {(4 b) \text {Subst}\left (\int \frac {(e x)^{3/2} (a+b \arcsin (x))}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{3 d e} \\ & = \frac {2 (e (c+d x))^{3/2} (a+b \arcsin (c+d x))^2}{3 d e}-\frac {8 b (e (c+d x))^{5/2} (a+b \arcsin (c+d x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},(c+d x)^2\right )}{15 d e^2}+\frac {16 b^2 (e (c+d x))^{7/2} \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};(c+d x)^2\right )}{105 d e^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.82 \[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\frac {2 (e (c+d x))^{3/2} \left (7 (a+b \arcsin (c+d x)) \left (5 (a+b \arcsin (c+d x))-4 b (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},(c+d x)^2\right )\right )+8 b^2 (c+d x)^2 \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};(c+d x)^2\right )\right )}{105 d e} \]

[In]

Integrate[Sqrt[c*e + d*e*x]*(a + b*ArcSin[c + d*x])^2,x]

[Out]

(2*(e*(c + d*x))^(3/2)*(7*(a + b*ArcSin[c + d*x])*(5*(a + b*ArcSin[c + d*x]) - 4*b*(c + d*x)*Hypergeometric2F1
[1/2, 5/4, 9/4, (c + d*x)^2]) + 8*b^2*(c + d*x)^2*HypergeometricPFQ[{1, 7/4, 7/4}, {9/4, 11/4}, (c + d*x)^2]))
/(105*d*e)

Maple [F]

\[\int \sqrt {d e x +c e}\, \left (a +b \arcsin \left (d x +c \right )\right )^{2}d x\]

[In]

int((d*e*x+c*e)^(1/2)*(a+b*arcsin(d*x+c))^2,x)

[Out]

int((d*e*x+c*e)^(1/2)*(a+b*arcsin(d*x+c))^2,x)

Fricas [F]

\[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\int { \sqrt {d e x + c e} {\left (b \arcsin \left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((d*e*x+c*e)^(1/2)*(a+b*arcsin(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((b^2*arcsin(d*x + c)^2 + 2*a*b*arcsin(d*x + c) + a^2)*sqrt(d*e*x + c*e), x)

Sympy [F]

\[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\int \sqrt {e \left (c + d x\right )} \left (a + b \operatorname {asin}{\left (c + d x \right )}\right )^{2}\, dx \]

[In]

integrate((d*e*x+c*e)**(1/2)*(a+b*asin(d*x+c))**2,x)

[Out]

Integral(sqrt(e*(c + d*x))*(a + b*asin(c + d*x))**2, x)

Maxima [F(-2)]

Exception generated. \[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((d*e*x+c*e)^(1/2)*(a+b*arcsin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\int { \sqrt {d e x + c e} {\left (b \arcsin \left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((d*e*x+c*e)^(1/2)*(a+b*arcsin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(d*e*x + c*e)*(b*arcsin(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {c e+d e x} (a+b \arcsin (c+d x))^2 \, dx=\int \sqrt {c\,e+d\,e\,x}\,{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^2 \,d x \]

[In]

int((c*e + d*e*x)^(1/2)*(a + b*asin(c + d*x))^2,x)

[Out]

int((c*e + d*e*x)^(1/2)*(a + b*asin(c + d*x))^2, x)