\(\int \frac {d+e x}{a+b \arcsin (c x)} \, dx\) [18]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 115 \[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=\frac {d \cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}-\frac {e \operatorname {CosIntegral}\left (\frac {2 a}{b}+2 \arcsin (c x)\right ) \sin \left (\frac {2 a}{b}\right )}{2 b c^2}+\frac {d \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}+\frac {e \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 a}{b}+2 \arcsin (c x)\right )}{2 b c^2} \]

[Out]

d*Ci(a/b+arcsin(c*x))*cos(a/b)/b/c+1/2*e*cos(2*a/b)*Si(2*a/b+2*arcsin(c*x))/b/c^2+d*Si(a/b+arcsin(c*x))*sin(a/
b)/b/c-1/2*e*Ci(2*a/b+2*arcsin(c*x))*sin(2*a/b)/b/c^2

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {4831, 6874, 3384, 3380, 3383, 4491, 12} \[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=-\frac {e \sin \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {2 a}{b}+2 \arcsin (c x)\right )}{2 b c^2}+\frac {e \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 a}{b}+2 \arcsin (c x)\right )}{2 b c^2}+\frac {d \cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}+\frac {d \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c} \]

[In]

Int[(d + e*x)/(a + b*ArcSin[c*x]),x]

[Out]

(d*Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]])/(b*c) - (e*CosIntegral[(2*a)/b + 2*ArcSin[c*x]]*Sin[(2*a)/b])/(2*b
*c^2) + (d*Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]])/(b*c) + (e*Cos[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSin[c*x
]])/(2*b*c^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4831

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[I
nt[(a + b*x)^n*Cos[x]*(c*d + e*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0
]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\cos (x) (c d+e \sin (x))}{a+b x} \, dx,x,\arcsin (c x)\right )}{c^2} \\ & = \frac {\text {Subst}\left (\int \left (\frac {c d \cos (x)}{a+b x}+\frac {e \cos (x) \sin (x)}{a+b x}\right ) \, dx,x,\arcsin (c x)\right )}{c^2} \\ & = \frac {d \text {Subst}\left (\int \frac {\cos (x)}{a+b x} \, dx,x,\arcsin (c x)\right )}{c}+\frac {e \text {Subst}\left (\int \frac {\cos (x) \sin (x)}{a+b x} \, dx,x,\arcsin (c x)\right )}{c^2} \\ & = \frac {e \text {Subst}\left (\int \frac {\sin (2 x)}{2 (a+b x)} \, dx,x,\arcsin (c x)\right )}{c^2}+\frac {\left (d \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\arcsin (c x)\right )}{c}+\frac {\left (d \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\arcsin (c x)\right )}{c} \\ & = \frac {d \cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}+\frac {d \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}+\frac {e \text {Subst}\left (\int \frac {\sin (2 x)}{a+b x} \, dx,x,\arcsin (c x)\right )}{2 c^2} \\ & = \frac {d \cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}+\frac {d \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}+\frac {\left (e \cos \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\arcsin (c x)\right )}{2 c^2}-\frac {\left (e \sin \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\arcsin (c x)\right )}{2 c^2} \\ & = \frac {d \cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}-\frac {e \operatorname {CosIntegral}\left (\frac {2 a}{b}+2 \arcsin (c x)\right ) \sin \left (\frac {2 a}{b}\right )}{2 b c^2}+\frac {d \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )}{b c}+\frac {e \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 a}{b}+2 \arcsin (c x)\right )}{2 b c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.85 \[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=\frac {2 c d \cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right )-e \operatorname {CosIntegral}\left (2 \left (\frac {a}{b}+\arcsin (c x)\right )\right ) \sin \left (\frac {2 a}{b}\right )+2 c d \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )+e \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (2 \left (\frac {a}{b}+\arcsin (c x)\right )\right )}{2 b c^2} \]

[In]

Integrate[(d + e*x)/(a + b*ArcSin[c*x]),x]

[Out]

(2*c*d*Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]] - e*CosIntegral[2*(a/b + ArcSin[c*x])]*Sin[(2*a)/b] + 2*c*d*Sin
[a/b]*SinIntegral[a/b + ArcSin[c*x]] + e*Cos[(2*a)/b]*SinIntegral[2*(a/b + ArcSin[c*x])])/(2*b*c^2)

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.90

method result size
derivativedivides \(\frac {\frac {d \left (\operatorname {Si}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )+\operatorname {Ci}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )\right )}{b}+\frac {e \left (\operatorname {Si}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right )-\operatorname {Ci}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right )\right )}{2 c b}}{c}\) \(103\)
default \(\frac {\frac {d \left (\operatorname {Si}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )+\operatorname {Ci}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )\right )}{b}+\frac {e \left (\operatorname {Si}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right )-\operatorname {Ci}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right )\right )}{2 c b}}{c}\) \(103\)

[In]

int((e*x+d)/(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/c*(d*(Si(arcsin(c*x)+a/b)*sin(a/b)+Ci(arcsin(c*x)+a/b)*cos(a/b))/b+1/2/c*e*(Si(2*arcsin(c*x)+2*a/b)*cos(2*a/
b)-Ci(2*arcsin(c*x)+2*a/b)*sin(2*a/b))/b)

Fricas [F]

\[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=\int { \frac {e x + d}{b \arcsin \left (c x\right ) + a} \,d x } \]

[In]

integrate((e*x+d)/(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral((e*x + d)/(b*arcsin(c*x) + a), x)

Sympy [F]

\[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=\int \frac {d + e x}{a + b \operatorname {asin}{\left (c x \right )}}\, dx \]

[In]

integrate((e*x+d)/(a+b*asin(c*x)),x)

[Out]

Integral((d + e*x)/(a + b*asin(c*x)), x)

Maxima [F]

\[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=\int { \frac {e x + d}{b \arcsin \left (c x\right ) + a} \,d x } \]

[In]

integrate((e*x+d)/(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

integrate((e*x + d)/(b*arcsin(c*x) + a), x)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.21 \[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=\frac {d \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{b c} - \frac {e \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b c^{2}} + \frac {e \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b c^{2}} + \frac {d \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{b c} - \frac {e \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{2 \, b c^{2}} \]

[In]

integrate((e*x+d)/(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

d*cos(a/b)*cos_integral(a/b + arcsin(c*x))/(b*c) - e*cos(a/b)*cos_integral(2*a/b + 2*arcsin(c*x))*sin(a/b)/(b*
c^2) + e*cos(a/b)^2*sin_integral(2*a/b + 2*arcsin(c*x))/(b*c^2) + d*sin(a/b)*sin_integral(a/b + arcsin(c*x))/(
b*c) - 1/2*e*sin_integral(2*a/b + 2*arcsin(c*x))/(b*c^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x}{a+b \arcsin (c x)} \, dx=\int \frac {d+e\,x}{a+b\,\mathrm {asin}\left (c\,x\right )} \,d x \]

[In]

int((d + e*x)/(a + b*asin(c*x)),x)

[Out]

int((d + e*x)/(a + b*asin(c*x)), x)