\(\int \frac {\arcsin (\sqrt {x})}{x^3} \, dx\) [366]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 50 \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=-\frac {\sqrt {1-x}}{6 x^{3/2}}-\frac {\sqrt {1-x}}{3 \sqrt {x}}-\frac {\arcsin \left (\sqrt {x}\right )}{2 x^2} \]

[Out]

-1/2*arcsin(x^(1/2))/x^2-1/6*(1-x)^(1/2)/x^(3/2)-1/3*(1-x)^(1/2)/x^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {4926, 12, 47, 37} \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=-\frac {\arcsin \left (\sqrt {x}\right )}{2 x^2}-\frac {\sqrt {1-x}}{6 x^{3/2}}-\frac {\sqrt {1-x}}{3 \sqrt {x}} \]

[In]

Int[ArcSin[Sqrt[x]]/x^3,x]

[Out]

-1/6*Sqrt[1 - x]/x^(3/2) - Sqrt[1 - x]/(3*Sqrt[x]) - ArcSin[Sqrt[x]]/(2*x^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 4926

Int[((a_.) + ArcSin[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcSin[
u])/(d*(m + 1))), x] - Dist[b/(d*(m + 1)), Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/Sqrt[1 - u^2]), x]
, x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !FunctionOfQ[(c + d*x)^(
m + 1), u, x] &&  !FunctionOfExponentialQ[u, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\arcsin \left (\sqrt {x}\right )}{2 x^2}+\frac {1}{2} \int \frac {1}{2 \sqrt {1-x} x^{5/2}} \, dx \\ & = -\frac {\arcsin \left (\sqrt {x}\right )}{2 x^2}+\frac {1}{4} \int \frac {1}{\sqrt {1-x} x^{5/2}} \, dx \\ & = -\frac {\sqrt {1-x}}{6 x^{3/2}}-\frac {\arcsin \left (\sqrt {x}\right )}{2 x^2}+\frac {1}{6} \int \frac {1}{\sqrt {1-x} x^{3/2}} \, dx \\ & = -\frac {\sqrt {1-x}}{6 x^{3/2}}-\frac {\sqrt {1-x}}{3 \sqrt {x}}-\frac {\arcsin \left (\sqrt {x}\right )}{2 x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.64 \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=-\frac {\sqrt {-((-1+x) x)} (1+2 x)+3 \arcsin \left (\sqrt {x}\right )}{6 x^2} \]

[In]

Integrate[ArcSin[Sqrt[x]]/x^3,x]

[Out]

-1/6*(Sqrt[-((-1 + x)*x)]*(1 + 2*x) + 3*ArcSin[Sqrt[x]])/x^2

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.70

method result size
derivativedivides \(-\frac {\arcsin \left (\sqrt {x}\right )}{2 x^{2}}-\frac {\sqrt {1-x}}{6 x^{\frac {3}{2}}}-\frac {\sqrt {1-x}}{3 \sqrt {x}}\) \(35\)
default \(-\frac {\arcsin \left (\sqrt {x}\right )}{2 x^{2}}-\frac {\sqrt {1-x}}{6 x^{\frac {3}{2}}}-\frac {\sqrt {1-x}}{3 \sqrt {x}}\) \(35\)
parts \(-\frac {\arcsin \left (\sqrt {x}\right )}{2 x^{2}}-\frac {\sqrt {1-x}}{6 x^{\frac {3}{2}}}-\frac {\sqrt {1-x}}{3 \sqrt {x}}\) \(35\)

[In]

int(arcsin(x^(1/2))/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/2*arcsin(x^(1/2))/x^2-1/6*(1-x)^(1/2)/x^(3/2)-1/3*(1-x)^(1/2)/x^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.56 \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=-\frac {{\left (2 \, x + 1\right )} \sqrt {x} \sqrt {-x + 1} + 3 \, \arcsin \left (\sqrt {x}\right )}{6 \, x^{2}} \]

[In]

integrate(arcsin(x^(1/2))/x^3,x, algorithm="fricas")

[Out]

-1/6*((2*x + 1)*sqrt(x)*sqrt(-x + 1) + 3*arcsin(sqrt(x)))/x^2

Sympy [A] (verification not implemented)

Time = 2.73 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.02 \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=\frac {\begin {cases} - \frac {\sqrt {1 - x}}{\sqrt {x}} - \frac {\left (1 - x\right )^{\frac {3}{2}}}{3 x^{\frac {3}{2}}} & \text {for}\: \sqrt {x} > -1 \wedge \sqrt {x} < 1 \end {cases}}{2} - \frac {\operatorname {asin}{\left (\sqrt {x} \right )}}{2 x^{2}} \]

[In]

integrate(asin(x**(1/2))/x**3,x)

[Out]

Piecewise((-sqrt(1 - x)/sqrt(x) - (1 - x)**(3/2)/(3*x**(3/2)), (sqrt(x) > -1) & (sqrt(x) < 1)))/2 - asin(sqrt(
x))/(2*x**2)

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.68 \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=-\frac {\sqrt {-x + 1}}{3 \, \sqrt {x}} - \frac {\sqrt {-x + 1}}{6 \, x^{\frac {3}{2}}} - \frac {\arcsin \left (\sqrt {x}\right )}{2 \, x^{2}} \]

[In]

integrate(arcsin(x^(1/2))/x^3,x, algorithm="maxima")

[Out]

-1/3*sqrt(-x + 1)/sqrt(x) - 1/6*sqrt(-x + 1)/x^(3/2) - 1/2*arcsin(sqrt(x))/x^2

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 74 vs. \(2 (34) = 68\).

Time = 0.28 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.48 \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=-\frac {{\left (\sqrt {-x + 1} - 1\right )}^{3}}{48 \, x^{\frac {3}{2}}} - \frac {3 \, {\left (\sqrt {-x + 1} - 1\right )}}{16 \, \sqrt {x}} + \frac {x^{\frac {3}{2}} {\left (\frac {9 \, {\left (\sqrt {-x + 1} - 1\right )}^{2}}{x} + 1\right )}}{48 \, {\left (\sqrt {-x + 1} - 1\right )}^{3}} - \frac {\arcsin \left (\sqrt {x}\right )}{2 \, x^{2}} \]

[In]

integrate(arcsin(x^(1/2))/x^3,x, algorithm="giac")

[Out]

-1/48*(sqrt(-x + 1) - 1)^3/x^(3/2) - 3/16*(sqrt(-x + 1) - 1)/sqrt(x) + 1/48*x^(3/2)*(9*(sqrt(-x + 1) - 1)^2/x
+ 1)/(sqrt(-x + 1) - 1)^3 - 1/2*arcsin(sqrt(x))/x^2

Mupad [F(-1)]

Timed out. \[ \int \frac {\arcsin \left (\sqrt {x}\right )}{x^3} \, dx=\int \frac {\mathrm {asin}\left (\sqrt {x}\right )}{x^3} \,d x \]

[In]

int(asin(x^(1/2))/x^3,x)

[Out]

int(asin(x^(1/2))/x^3, x)