\(\int e^x \arcsin (e^x) \, dx\) [437]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 8, antiderivative size = 22 \[ \int e^x \arcsin \left (e^x\right ) \, dx=\sqrt {1-e^{2 x}}+e^x \arcsin \left (e^x\right ) \]

[Out]

exp(x)*arcsin(exp(x))+(1-exp(2*x))^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {2225, 4928, 2278, 32} \[ \int e^x \arcsin \left (e^x\right ) \, dx=e^x \arcsin \left (e^x\right )+\sqrt {1-e^{2 x}} \]

[In]

Int[E^x*ArcSin[E^x],x]

[Out]

Sqrt[1 - E^(2*x)] + E^x*ArcSin[E^x]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2278

Int[((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)*((a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.))^(p_.),
x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int[(a + b*x)^p, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b,
c, d, e, n, p}, x]

Rule 4928

Int[((a_.) + ArcSin[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[a + b*ArcSin[u], w, x] - Dist
[b, Int[SimplifyIntegrand[w*(D[u, x]/Sqrt[1 - u^2]), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}
, x] && InverseFunctionFreeQ[u, x] &&  !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]]

Rubi steps \begin{align*} \text {integral}& = e^x \arcsin \left (e^x\right )-\int \frac {e^{2 x}}{\sqrt {1-e^{2 x}}} \, dx \\ & = e^x \arcsin \left (e^x\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{\sqrt {1-x}} \, dx,x,e^{2 x}\right ) \\ & = \sqrt {1-e^{2 x}}+e^x \arcsin \left (e^x\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00 \[ \int e^x \arcsin \left (e^x\right ) \, dx=\sqrt {1-e^{2 x}}+e^x \arcsin \left (e^x\right ) \]

[In]

Integrate[E^x*ArcSin[E^x],x]

[Out]

Sqrt[1 - E^(2*x)] + E^x*ArcSin[E^x]

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.82

method result size
derivativedivides \({\mathrm e}^{x} \arcsin \left ({\mathrm e}^{x}\right )+\sqrt {1-{\mathrm e}^{2 x}}\) \(18\)
default \({\mathrm e}^{x} \arcsin \left ({\mathrm e}^{x}\right )+\sqrt {1-{\mathrm e}^{2 x}}\) \(18\)

[In]

int(exp(x)*arcsin(exp(x)),x,method=_RETURNVERBOSE)

[Out]

exp(x)*arcsin(exp(x))+(-exp(x)^2+1)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.77 \[ \int e^x \arcsin \left (e^x\right ) \, dx=\arcsin \left (e^{x}\right ) e^{x} + \sqrt {-e^{\left (2 \, x\right )} + 1} \]

[In]

integrate(exp(x)*arcsin(exp(x)),x, algorithm="fricas")

[Out]

arcsin(e^x)*e^x + sqrt(-e^(2*x) + 1)

Sympy [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.77 \[ \int e^x \arcsin \left (e^x\right ) \, dx=\sqrt {1 - e^{2 x}} + e^{x} \operatorname {asin}{\left (e^{x} \right )} \]

[In]

integrate(exp(x)*asin(exp(x)),x)

[Out]

sqrt(1 - exp(2*x)) + exp(x)*asin(exp(x))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.77 \[ \int e^x \arcsin \left (e^x\right ) \, dx=\arcsin \left (e^{x}\right ) e^{x} + \sqrt {-e^{\left (2 \, x\right )} + 1} \]

[In]

integrate(exp(x)*arcsin(exp(x)),x, algorithm="maxima")

[Out]

arcsin(e^x)*e^x + sqrt(-e^(2*x) + 1)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.77 \[ \int e^x \arcsin \left (e^x\right ) \, dx=\arcsin \left (e^{x}\right ) e^{x} + \sqrt {-e^{\left (2 \, x\right )} + 1} \]

[In]

integrate(exp(x)*arcsin(exp(x)),x, algorithm="giac")

[Out]

arcsin(e^x)*e^x + sqrt(-e^(2*x) + 1)

Mupad [B] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.77 \[ \int e^x \arcsin \left (e^x\right ) \, dx=\sqrt {1-{\mathrm {e}}^{2\,x}}+\mathrm {asin}\left ({\mathrm {e}}^x\right )\,{\mathrm {e}}^x \]

[In]

int(asin(exp(x))*exp(x),x)

[Out]

(1 - exp(2*x))^(1/2) + asin(exp(x))*exp(x)