\(\int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx\) [45]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F(-2)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 270 \[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {2 b f g x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {b g^2 x^2 \sqrt {1-c^2 x^2}}{4 c \sqrt {d-c^2 d x^2}}-\frac {2 f g \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{c^2 \sqrt {d-c^2 d x^2}}-\frac {g^2 x \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {f^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{2 b c \sqrt {d-c^2 d x^2}}+\frac {g^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{4 b c^3 \sqrt {d-c^2 d x^2}} \]

[Out]

-2*f*g*(-c^2*x^2+1)*(a+b*arcsin(c*x))/c^2/(-c^2*d*x^2+d)^(1/2)-1/2*g^2*x*(-c^2*x^2+1)*(a+b*arcsin(c*x))/c^2/(-
c^2*d*x^2+d)^(1/2)+2*b*f*g*x*(-c^2*x^2+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)+1/4*b*g^2*x^2*(-c^2*x^2+1)^(1/2)/c/(-c^
2*d*x^2+d)^(1/2)+1/2*f^2*(a+b*arcsin(c*x))^2*(-c^2*x^2+1)^(1/2)/b/c/(-c^2*d*x^2+d)^(1/2)+1/4*g^2*(a+b*arcsin(c
*x))^2*(-c^2*x^2+1)^(1/2)/b/c^3/(-c^2*d*x^2+d)^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {4861, 4847, 4737, 4767, 8, 4795, 30} \[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {f^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{2 b c \sqrt {d-c^2 d x^2}}-\frac {2 f g \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{c^2 \sqrt {d-c^2 d x^2}}-\frac {g^2 x \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {g^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{4 b c^3 \sqrt {d-c^2 d x^2}}+\frac {2 b f g x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {b g^2 x^2 \sqrt {1-c^2 x^2}}{4 c \sqrt {d-c^2 d x^2}} \]

[In]

Int[((f + g*x)^2*(a + b*ArcSin[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

(2*b*f*g*x*Sqrt[1 - c^2*x^2])/(c*Sqrt[d - c^2*d*x^2]) + (b*g^2*x^2*Sqrt[1 - c^2*x^2])/(4*c*Sqrt[d - c^2*d*x^2]
) - (2*f*g*(1 - c^2*x^2)*(a + b*ArcSin[c*x]))/(c^2*Sqrt[d - c^2*d*x^2]) - (g^2*x*(1 - c^2*x^2)*(a + b*ArcSin[c
*x]))/(2*c^2*Sqrt[d - c^2*d*x^2]) + (f^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(2*b*c*Sqrt[d - c^2*d*x^2])
+ (g^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(4*b*c^3*Sqrt[d - c^2*d*x^2])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rule 4847

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
 x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))

Rule 4861

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] /; F
reeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] &&  !GtQ[d, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {1-c^2 x^2} \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}} \\ & = \frac {\sqrt {1-c^2 x^2} \int \left (\frac {f^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}+\frac {2 f g x (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}+\frac {g^2 x^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}\right ) \, dx}{\sqrt {d-c^2 d x^2}} \\ & = \frac {\left (f^2 \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}}+\frac {\left (2 f g \sqrt {1-c^2 x^2}\right ) \int \frac {x (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}}+\frac {\left (g^2 \sqrt {1-c^2 x^2}\right ) \int \frac {x^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}} \\ & = -\frac {2 f g \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{c^2 \sqrt {d-c^2 d x^2}}-\frac {g^2 x \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {f^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{2 b c \sqrt {d-c^2 d x^2}}+\frac {\left (2 b f g \sqrt {1-c^2 x^2}\right ) \int 1 \, dx}{c \sqrt {d-c^2 d x^2}}+\frac {\left (g^2 \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}} \, dx}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {\left (b g^2 \sqrt {1-c^2 x^2}\right ) \int x \, dx}{2 c \sqrt {d-c^2 d x^2}} \\ & = \frac {2 b f g x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {b g^2 x^2 \sqrt {1-c^2 x^2}}{4 c \sqrt {d-c^2 d x^2}}-\frac {2 f g \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{c^2 \sqrt {d-c^2 d x^2}}-\frac {g^2 x \left (1-c^2 x^2\right ) (a+b \arcsin (c x))}{2 c^2 \sqrt {d-c^2 d x^2}}+\frac {f^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{2 b c \sqrt {d-c^2 d x^2}}+\frac {g^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{4 b c^3 \sqrt {d-c^2 d x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 266, normalized size of antiderivative = 0.99 \[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {-2 b \sqrt {d} \left (2 c^2 f^2+g^2\right ) \left (-1+c^2 x^2\right ) \arcsin (c x)^2-4 a \left (2 c^2 f^2+g^2\right ) \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2} \arctan \left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )+\sqrt {d} g \left (-1+c^2 x^2\right ) \left (4 c \left (-4 b c f x+a (4 f+g x) \sqrt {1-c^2 x^2}\right )+b g \cos (2 \arcsin (c x))\right )+2 b \sqrt {d} g \left (-1+c^2 x^2\right ) \arcsin (c x) \left (8 c f \sqrt {1-c^2 x^2}+g \sin (2 \arcsin (c x))\right )}{8 c^3 \sqrt {d} \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}} \]

[In]

Integrate[((f + g*x)^2*(a + b*ArcSin[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

(-2*b*Sqrt[d]*(2*c^2*f^2 + g^2)*(-1 + c^2*x^2)*ArcSin[c*x]^2 - 4*a*(2*c^2*f^2 + g^2)*Sqrt[1 - c^2*x^2]*Sqrt[d
- c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))] + Sqrt[d]*g*(-1 + c^2*x^2)*(4*c*(-4*b*
c*f*x + a*(4*f + g*x)*Sqrt[1 - c^2*x^2]) + b*g*Cos[2*ArcSin[c*x]]) + 2*b*Sqrt[d]*g*(-1 + c^2*x^2)*ArcSin[c*x]*
(8*c*f*Sqrt[1 - c^2*x^2] + g*Sin[2*ArcSin[c*x]]))/(8*c^3*Sqrt[d]*Sqrt[1 - c^2*x^2]*Sqrt[d - c^2*d*x^2])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.50 (sec) , antiderivative size = 505, normalized size of antiderivative = 1.87

method result size
default \(a \left (\frac {f^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}+g^{2} \left (-\frac {x \sqrt {-c^{2} d \,x^{2}+d}}{2 c^{2} d}+\frac {\arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{2} \sqrt {c^{2} d}}\right )-\frac {2 f g \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}\right )+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} \left (2 c^{2} f^{2}+g^{2}\right )}{4 c^{3} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) f g \left (\arcsin \left (c x \right )+i\right )}{c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) f g \left (\arcsin \left (c x \right )-i\right )}{c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, g^{2}}{16 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{2} \arcsin \left (c x \right ) x}{8 c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{2} \cos \left (3 \arcsin \left (c x \right )\right )}{16 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{2} \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}\right )\) \(505\)
parts \(a \left (\frac {f^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}+g^{2} \left (-\frac {x \sqrt {-c^{2} d \,x^{2}+d}}{2 c^{2} d}+\frac {\arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{2} \sqrt {c^{2} d}}\right )-\frac {2 f g \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}\right )+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} \left (2 c^{2} f^{2}+g^{2}\right )}{4 c^{3} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) f g \left (\arcsin \left (c x \right )+i\right )}{c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) f g \left (\arcsin \left (c x \right )-i\right )}{c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, g^{2}}{16 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{2} \arcsin \left (c x \right ) x}{8 c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{2} \cos \left (3 \arcsin \left (c x \right )\right )}{16 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{2} \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}\right )\) \(505\)

[In]

int((g*x+f)^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

a*(f^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+g^2*(-1/2*x/c^2/d*(-c^2*d*x^2+d)^(1/2)+1/2/c
^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2)))-2*f*g/c^2/d*(-c^2*d*x^2+d)^(1/2))+b*(-1/4*(-d*(
c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)^2*(2*c^2*f^2+g^2)-(-d*(c^2*x^2-1))^(1/2)*(c
^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*f*g*(arcsin(c*x)+I)/c^2/d/(c^2*x^2-1)-(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1
)^(1/2)*x*c+c^2*x^2-1)*f*g*(arcsin(c*x)-I)/c^2/d/(c^2*x^2-1)+1/16*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^
3/d/(c^2*x^2-1)*g^2+1/8*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*g^2*arcsin(c*x)*x+1/16*(-d*(c^2*x^2-1))^(1/2)
/c^3/d/(c^2*x^2-1)*g^2*cos(3*arcsin(c*x))+1/8*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*g^2*arcsin(c*x)*sin(3*a
rcsin(c*x)))

Fricas [F]

\[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (g x + f\right )}^{2} {\left (b \arcsin \left (c x\right ) + a\right )}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate((g*x+f)^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(a*g^2*x^2 + 2*a*f*g*x + a*f^2 + (b*g^2*x^2 + 2*b*f*g*x + b*f^2)*arcsin(c*x))/(
c^2*d*x^2 - d), x)

Sympy [F(-2)]

Exception generated. \[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((g*x+f)**2*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Exception raised: TypeError >> Invalid comparison of non-real zoo

Maxima [F]

\[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (g x + f\right )}^{2} {\left (b \arcsin \left (c x\right ) + a\right )}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate((g*x+f)^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/2*a*g^2*(sqrt(-c^2*d*x^2 + d)*x/(c^2*d) - arcsin(c*x)/(c^3*sqrt(d))) + 1/2*b*f^2*arcsin(c*x)^2/(c*sqrt(d))
+ b*g^2*integrate(x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))/(sqrt(c*x + 1)*sqrt(-c*x + 1)), x)/sqrt(d) +
2*b*f*g*x/(c*sqrt(d)) + a*f^2*arcsin(c*x)/(c*sqrt(d)) - 2*sqrt(-c^2*d*x^2 + d)*b*f*g*arcsin(c*x)/(c^2*d) - 2*s
qrt(-c^2*d*x^2 + d)*a*f*g/(c^2*d)

Giac [F]

\[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (g x + f\right )}^{2} {\left (b \arcsin \left (c x\right ) + a\right )}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate((g*x+f)^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((g*x + f)^2*(b*arcsin(c*x) + a)/sqrt(-c^2*d*x^2 + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(f+g x)^2 (a+b \arcsin (c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {{\left (f+g\,x\right )}^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

[In]

int(((f + g*x)^2*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(1/2),x)

[Out]

int(((f + g*x)^2*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(1/2), x)