\(\int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx\) [18]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 496 \[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=\frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\left (c^2 f^2-g^2\right ) (f+g x) \sqrt {d-c^2 d x^2}}+\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}-\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log (f+g x)}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}}+\frac {b c^2 f \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-\frac {e^{i \arccos (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}-\frac {b c^2 f \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-\frac {e^{i \arccos (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}} \]

[Out]

g*(-c^2*x^2+1)*(a+b*arccos(c*x))/(c^2*f^2-g^2)/(g*x+f)/(-c^2*d*x^2+d)^(1/2)+b*c*ln(g*x+f)*(-c^2*x^2+1)^(1/2)/(
c^2*f^2-g^2)/(-c^2*d*x^2+d)^(1/2)+I*c^2*f*(a+b*arccos(c*x))*ln(1+(c*x+I*(-c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2-g^
2)^(1/2)))*(-c^2*x^2+1)^(1/2)/(c^2*f^2-g^2)^(3/2)/(-c^2*d*x^2+d)^(1/2)-I*c^2*f*(a+b*arccos(c*x))*ln(1+(c*x+I*(
-c^2*x^2+1)^(1/2))*g/(c*f+(c^2*f^2-g^2)^(1/2)))*(-c^2*x^2+1)^(1/2)/(c^2*f^2-g^2)^(3/2)/(-c^2*d*x^2+d)^(1/2)+b*
c^2*f*polylog(2,-(c*x+I*(-c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2-g^2)^(1/2)))*(-c^2*x^2+1)^(1/2)/(c^2*f^2-g^2)^(3/2
)/(-c^2*d*x^2+d)^(1/2)-b*c^2*f*polylog(2,-(c*x+I*(-c^2*x^2+1)^(1/2))*g/(c*f+(c^2*f^2-g^2)^(1/2)))*(-c^2*x^2+1)
^(1/2)/(c^2*f^2-g^2)^(3/2)/(-c^2*d*x^2+d)^(1/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 496, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {4862, 4858, 3405, 3402, 2296, 2221, 2317, 2438, 2747, 31} \[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=\frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\sqrt {d-c^2 d x^2} \left (c^2 f^2-g^2\right ) (f+g x)}+\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {g e^{i \arccos (c x)}}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\sqrt {d-c^2 d x^2} \left (c^2 f^2-g^2\right )^{3/2}}-\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {g e^{i \arccos (c x)}}{\sqrt {c^2 f^2-g^2}+c f}\right )}{\sqrt {d-c^2 d x^2} \left (c^2 f^2-g^2\right )^{3/2}}+\frac {b c^2 f \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-\frac {e^{i \arccos (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\sqrt {d-c^2 d x^2} \left (c^2 f^2-g^2\right )^{3/2}}-\frac {b c^2 f \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-\frac {e^{i \arccos (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{\sqrt {d-c^2 d x^2} \left (c^2 f^2-g^2\right )^{3/2}}+\frac {b c \sqrt {1-c^2 x^2} \log (f+g x)}{\sqrt {d-c^2 d x^2} \left (c^2 f^2-g^2\right )} \]

[In]

Int[(a + b*ArcCos[c*x])/((f + g*x)^2*Sqrt[d - c^2*d*x^2]),x]

[Out]

(g*(1 - c^2*x^2)*(a + b*ArcCos[c*x]))/((c^2*f^2 - g^2)*(f + g*x)*Sqrt[d - c^2*d*x^2]) + (I*c^2*f*Sqrt[1 - c^2*
x^2]*(a + b*ArcCos[c*x])*Log[1 + (E^(I*ArcCos[c*x])*g)/(c*f - Sqrt[c^2*f^2 - g^2])])/((c^2*f^2 - g^2)^(3/2)*Sq
rt[d - c^2*d*x^2]) - (I*c^2*f*Sqrt[1 - c^2*x^2]*(a + b*ArcCos[c*x])*Log[1 + (E^(I*ArcCos[c*x])*g)/(c*f + Sqrt[
c^2*f^2 - g^2])])/((c^2*f^2 - g^2)^(3/2)*Sqrt[d - c^2*d*x^2]) + (b*c*Sqrt[1 - c^2*x^2]*Log[f + g*x])/((c^2*f^2
 - g^2)*Sqrt[d - c^2*d*x^2]) + (b*c^2*f*Sqrt[1 - c^2*x^2]*PolyLog[2, -((E^(I*ArcCos[c*x])*g)/(c*f - Sqrt[c^2*f
^2 - g^2]))])/((c^2*f^2 - g^2)^(3/2)*Sqrt[d - c^2*d*x^2]) - (b*c^2*f*Sqrt[1 - c^2*x^2]*PolyLog[2, -((E^(I*ArcC
os[c*x])*g)/(c*f + Sqrt[c^2*f^2 - g^2]))])/((c^2*f^2 - g^2)^(3/2)*Sqrt[d - c^2*d*x^2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2296

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[2*(c/q), Int[(f + g*x)^m*(F^u/(b - q + 2*c*F^u)), x], x] - Dist[2*(c/q), Int[(f + g
*x)^m*(F^u/(b + q + 2*c*F^u)), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2747

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 3402

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)]), x_Symbol] :> Dist[2, Int[(c
+ d*x)^m*E^(I*Pi*(k - 1/2))*(E^(I*(e + f*x))/(b + 2*a*E^(I*Pi*(k - 1/2))*E^(I*(e + f*x)) - b*E^(2*I*k*Pi)*E^(2
*I*(e + f*x)))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[2*k] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 3405

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[b*(c + d*x)^m*(Cos[
e + f*x]/(f*(a^2 - b^2)*(a + b*Sin[e + f*x]))), x] + (Dist[a/(a^2 - b^2), Int[(c + d*x)^m/(a + b*Sin[e + f*x])
, x], x] - Dist[b*d*(m/(f*(a^2 - b^2))), Int[(c + d*x)^(m - 1)*(Cos[e + f*x]/(a + b*Sin[e + f*x])), x], x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 4858

Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol]
:> Dist[-(c^(m + 1)*Sqrt[d])^(-1), Subst[Int[(a + b*x)^n*(c*f + g*Cos[x])^m, x], x, ArcCos[c*x]], x] /; FreeQ[
{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0])

Rule 4862

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] /; F
reeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] &&  !GtQ[d, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}} \\ & = -\frac {\left (c \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {a+b x}{(c f+g \cos (x))^2} \, dx,x,\arccos (c x)\right )}{\sqrt {d-c^2 d x^2}} \\ & = \frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\left (c^2 f^2-g^2\right ) (f+g x) \sqrt {d-c^2 d x^2}}-\frac {\left (c^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {a+b x}{c f+g \cos (x)} \, dx,x,\arccos (c x)\right )}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}}-\frac {\left (b c g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\sin (x)}{c f+g \cos (x)} \, dx,x,\arccos (c x)\right )}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}} \\ & = \frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\left (c^2 f^2-g^2\right ) (f+g x) \sqrt {d-c^2 d x^2}}+\frac {\left (b c \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{c f+x} \, dx,x,c g x\right )}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}}-\frac {\left (2 c^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{2 c e^{i x} f+g+e^{2 i x} g} \, dx,x,\arccos (c x)\right )}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}} \\ & = \frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\left (c^2 f^2-g^2\right ) (f+g x) \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log (f+g x)}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}}-\frac {\left (2 c^2 f g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{2 c f+2 e^{i x} g-2 \sqrt {c^2 f^2-g^2}} \, dx,x,\arccos (c x)\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}+\frac {\left (2 c^2 f g \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{2 c f+2 e^{i x} g+2 \sqrt {c^2 f^2-g^2}} \, dx,x,\arccos (c x)\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}} \\ & = \frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\left (c^2 f^2-g^2\right ) (f+g x) \sqrt {d-c^2 d x^2}}+\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}-\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log (f+g x)}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}}-\frac {\left (i b c^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \log \left (1+\frac {2 e^{i x} g}{2 c f-2 \sqrt {c^2 f^2-g^2}}\right ) \, dx,x,\arccos (c x)\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}+\frac {\left (i b c^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \log \left (1+\frac {2 e^{i x} g}{2 c f+2 \sqrt {c^2 f^2-g^2}}\right ) \, dx,x,\arccos (c x)\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}} \\ & = \frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\left (c^2 f^2-g^2\right ) (f+g x) \sqrt {d-c^2 d x^2}}+\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}-\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log (f+g x)}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}}-\frac {\left (b c^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\log \left (1+\frac {2 g x}{2 c f-2 \sqrt {c^2 f^2-g^2}}\right )}{x} \, dx,x,e^{i \arccos (c x)}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}+\frac {\left (b c^2 f \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\log \left (1+\frac {2 g x}{2 c f+2 \sqrt {c^2 f^2-g^2}}\right )}{x} \, dx,x,e^{i \arccos (c x)}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}} \\ & = \frac {g \left (1-c^2 x^2\right ) (a+b \arccos (c x))}{\left (c^2 f^2-g^2\right ) (f+g x) \sqrt {d-c^2 d x^2}}+\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}-\frac {i c^2 f \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+\frac {e^{i \arccos (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}+\frac {b c \sqrt {1-c^2 x^2} \log (f+g x)}{\left (c^2 f^2-g^2\right ) \sqrt {d-c^2 d x^2}}+\frac {b c^2 f \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-\frac {e^{i \arccos (c x)} g}{c f-\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}}-\frac {b c^2 f \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-\frac {e^{i \arccos (c x)} g}{c f+\sqrt {c^2 f^2-g^2}}\right )}{\left (c^2 f^2-g^2\right )^{3/2} \sqrt {d-c^2 d x^2}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1108\) vs. \(2(496)=992\).

Time = 5.90 (sec) , antiderivative size = 1108, normalized size of antiderivative = 2.23 \[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=-\frac {a g \sqrt {d-c^2 d x^2}}{d \left (-c^2 f^2+g^2\right ) (f+g x)}-\frac {a c^2 f \log (f+g x)}{\sqrt {d} \left (-c^2 f^2+g^2\right )^{3/2}}-\frac {a c^2 f \log \left (d \left (g+c^2 f x\right )+\sqrt {d} \sqrt {-c^2 f^2+g^2} \sqrt {d-c^2 d x^2}\right )}{\sqrt {d} (c f-g) (c f+g) \sqrt {-c^2 f^2+g^2}}-\frac {b c \sqrt {1-c^2 x^2} \left (-\frac {g \sqrt {1-c^2 x^2} \arccos (c x)}{(c f-g) (c f+g) (c f+c g x)}-\frac {\log \left (1+\frac {g x}{f}\right )}{c^2 f^2-g^2}-\frac {c f \left (2 \arccos (c x) \text {arctanh}\left (\frac {(c f+g) \cot \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )-2 \arccos \left (-\frac {c f}{g}\right ) \text {arctanh}\left (\frac {(-c f+g) \tan \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )+\left (\arccos \left (-\frac {c f}{g}\right )-2 i \text {arctanh}\left (\frac {(c f+g) \cot \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )+2 i \text {arctanh}\left (\frac {(-c f+g) \tan \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )\right ) \log \left (\frac {e^{-\frac {1}{2} i \arccos (c x)} \sqrt {-c^2 f^2+g^2}}{\sqrt {2} \sqrt {g} \sqrt {c (f+g x)}}\right )+\left (\arccos \left (-\frac {c f}{g}\right )+2 i \left (\text {arctanh}\left (\frac {(c f+g) \cot \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )-\text {arctanh}\left (\frac {(-c f+g) \tan \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )\right )\right ) \log \left (\frac {e^{\frac {1}{2} i \arccos (c x)} \sqrt {-c^2 f^2+g^2}}{\sqrt {2} \sqrt {g} \sqrt {c (f+g x)}}\right )-\left (\arccos \left (-\frac {c f}{g}\right )-2 i \text {arctanh}\left (\frac {(-c f+g) \tan \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )\right ) \log \left (\frac {(c f+g) \left (-i c f+i g+\sqrt {-c^2 f^2+g^2}\right ) \left (-i+\tan \left (\frac {1}{2} \arccos (c x)\right )\right )}{g \left (c f+g+\sqrt {-c^2 f^2+g^2} \tan \left (\frac {1}{2} \arccos (c x)\right )\right )}\right )-\left (\arccos \left (-\frac {c f}{g}\right )+2 i \text {arctanh}\left (\frac {(-c f+g) \tan \left (\frac {1}{2} \arccos (c x)\right )}{\sqrt {-c^2 f^2+g^2}}\right )\right ) \log \left (\frac {(c f+g) \left (i c f-i g+\sqrt {-c^2 f^2+g^2}\right ) \left (i+\tan \left (\frac {1}{2} \arccos (c x)\right )\right )}{g \left (c f+g+\sqrt {-c^2 f^2+g^2} \tan \left (\frac {1}{2} \arccos (c x)\right )\right )}\right )+i \left (\operatorname {PolyLog}\left (2,\frac {\left (c f-i \sqrt {-c^2 f^2+g^2}\right ) \left (c f+g-\sqrt {-c^2 f^2+g^2} \tan \left (\frac {1}{2} \arccos (c x)\right )\right )}{g \left (c f+g+\sqrt {-c^2 f^2+g^2} \tan \left (\frac {1}{2} \arccos (c x)\right )\right )}\right )-\operatorname {PolyLog}\left (2,\frac {\left (c f+i \sqrt {-c^2 f^2+g^2}\right ) \left (c f+g-\sqrt {-c^2 f^2+g^2} \tan \left (\frac {1}{2} \arccos (c x)\right )\right )}{g \left (c f+g+\sqrt {-c^2 f^2+g^2} \tan \left (\frac {1}{2} \arccos (c x)\right )\right )}\right )\right )\right )}{\left (-c^2 f^2+g^2\right )^{3/2}}\right )}{\sqrt {d-c^2 d x^2}} \]

[In]

Integrate[(a + b*ArcCos[c*x])/((f + g*x)^2*Sqrt[d - c^2*d*x^2]),x]

[Out]

-((a*g*Sqrt[d - c^2*d*x^2])/(d*(-(c^2*f^2) + g^2)*(f + g*x))) - (a*c^2*f*Log[f + g*x])/(Sqrt[d]*(-(c^2*f^2) +
g^2)^(3/2)) - (a*c^2*f*Log[d*(g + c^2*f*x) + Sqrt[d]*Sqrt[-(c^2*f^2) + g^2]*Sqrt[d - c^2*d*x^2]])/(Sqrt[d]*(c*
f - g)*(c*f + g)*Sqrt[-(c^2*f^2) + g^2]) - (b*c*Sqrt[1 - c^2*x^2]*(-((g*Sqrt[1 - c^2*x^2]*ArcCos[c*x])/((c*f -
 g)*(c*f + g)*(c*f + c*g*x))) - Log[1 + (g*x)/f]/(c^2*f^2 - g^2) - (c*f*(2*ArcCos[c*x]*ArcTanh[((c*f + g)*Cot[
ArcCos[c*x]/2])/Sqrt[-(c^2*f^2) + g^2]] - 2*ArcCos[-((c*f)/g)]*ArcTanh[((-(c*f) + g)*Tan[ArcCos[c*x]/2])/Sqrt[
-(c^2*f^2) + g^2]] + (ArcCos[-((c*f)/g)] - (2*I)*ArcTanh[((c*f + g)*Cot[ArcCos[c*x]/2])/Sqrt[-(c^2*f^2) + g^2]
] + (2*I)*ArcTanh[((-(c*f) + g)*Tan[ArcCos[c*x]/2])/Sqrt[-(c^2*f^2) + g^2]])*Log[Sqrt[-(c^2*f^2) + g^2]/(Sqrt[
2]*E^((I/2)*ArcCos[c*x])*Sqrt[g]*Sqrt[c*(f + g*x)])] + (ArcCos[-((c*f)/g)] + (2*I)*(ArcTanh[((c*f + g)*Cot[Arc
Cos[c*x]/2])/Sqrt[-(c^2*f^2) + g^2]] - ArcTanh[((-(c*f) + g)*Tan[ArcCos[c*x]/2])/Sqrt[-(c^2*f^2) + g^2]]))*Log
[(E^((I/2)*ArcCos[c*x])*Sqrt[-(c^2*f^2) + g^2])/(Sqrt[2]*Sqrt[g]*Sqrt[c*(f + g*x)])] - (ArcCos[-((c*f)/g)] - (
2*I)*ArcTanh[((-(c*f) + g)*Tan[ArcCos[c*x]/2])/Sqrt[-(c^2*f^2) + g^2]])*Log[((c*f + g)*((-I)*c*f + I*g + Sqrt[
-(c^2*f^2) + g^2])*(-I + Tan[ArcCos[c*x]/2]))/(g*(c*f + g + Sqrt[-(c^2*f^2) + g^2]*Tan[ArcCos[c*x]/2]))] - (Ar
cCos[-((c*f)/g)] + (2*I)*ArcTanh[((-(c*f) + g)*Tan[ArcCos[c*x]/2])/Sqrt[-(c^2*f^2) + g^2]])*Log[((c*f + g)*(I*
c*f - I*g + Sqrt[-(c^2*f^2) + g^2])*(I + Tan[ArcCos[c*x]/2]))/(g*(c*f + g + Sqrt[-(c^2*f^2) + g^2]*Tan[ArcCos[
c*x]/2]))] + I*(PolyLog[2, ((c*f - I*Sqrt[-(c^2*f^2) + g^2])*(c*f + g - Sqrt[-(c^2*f^2) + g^2]*Tan[ArcCos[c*x]
/2]))/(g*(c*f + g + Sqrt[-(c^2*f^2) + g^2]*Tan[ArcCos[c*x]/2]))] - PolyLog[2, ((c*f + I*Sqrt[-(c^2*f^2) + g^2]
)*(c*f + g - Sqrt[-(c^2*f^2) + g^2]*Tan[ArcCos[c*x]/2]))/(g*(c*f + g + Sqrt[-(c^2*f^2) + g^2]*Tan[ArcCos[c*x]/
2]))])))/(-(c^2*f^2) + g^2)^(3/2)))/Sqrt[d - c^2*d*x^2]

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1621 vs. \(2 (492 ) = 984\).

Time = 2.68 (sec) , antiderivative size = 1622, normalized size of antiderivative = 3.27

method result size
default \(\text {Expression too large to display}\) \(1622\)
parts \(\text {Expression too large to display}\) \(1622\)

[In]

int((a+b*arccos(c*x))/(g*x+f)^2/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

a/d/(c^2*f^2-g^2)/(x+f/g)*(-(x+f/g)^2*c^2*d+2*c^2*d*f/g*(x+f/g)-d*(c^2*f^2-g^2)/g^2)^(1/2)-a/g*c^2*f/(c^2*f^2-
g^2)/(-d*(c^2*f^2-g^2)/g^2)^(1/2)*ln((-2*d*(c^2*f^2-g^2)/g^2+2*c^2*d*f/g*(x+f/g)+2*(-d*(c^2*f^2-g^2)/g^2)^(1/2
)*(-(x+f/g)^2*c^2*d+2*c^2*d*f/g*(x+f/g)-d*(c^2*f^2-g^2)/g^2)^(1/2))/(x+f/g))+b*(-d*(c^2*x^2-1))^(1/2)*arccos(c
*x)/d/(c^2*x^2-1)/(c^2*f^2-g^2)/(g*x+f)*(-c^2*x^2+1)*x*c^2*f+b*(-d*(c^2*x^2-1))^(1/2)*arccos(c*x)/d/(c^2*x^2-1
)/(c^2*f^2-g^2)/(g*x+f)*x^3*c^4*f+I*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^(3
/2)*c^2*arccos(c*x)*ln(((c*x+I*(-c^2*x^2+1)^(1/2))*g+c*f+(c^2*f^2-g^2)^(1/2))/(c*f+(c^2*f^2-g^2)^(1/2)))*f+b*(
-d*(c^2*x^2-1))^(1/2)*arccos(c*x)/d/(c^2*x^2-1)/(c^2*f^2-g^2)/(g*x+f)*x^2*c^2*g-I*b*(-d*(c^2*x^2-1))^(1/2)*arc
cos(c*x)/d/(c^2*x^2-1)/(c^2*f^2-g^2)/(g*x+f)*(-c^2*x^2+1)^(1/2)*c*f-b*(-d*(c^2*x^2-1))^(1/2)*arccos(c*x)/d/(c^
2*x^2-1)/(c^2*f^2-g^2)/(g*x+f)*x*c^2*f-b*(-d*(c^2*x^2-1))^(1/2)*arccos(c*x)/d/(c^2*x^2-1)/(c^2*f^2-g^2)/(g*x+f
)*g-I*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^(3/2)*c^2*arccos(c*x)*ln((-(c*x+
I*(-c^2*x^2+1)^(1/2))*g-c*f+(c^2*f^2-g^2)^(1/2))/(-c*f+(c^2*f^2-g^2)^(1/2)))*f-I*b*(-d*(c^2*x^2-1))^(1/2)*arcc
os(c*x)/d/(c^2*x^2-1)/(c^2*f^2-g^2)/(g*x+f)*(-c^2*x^2+1)^(1/2)*x*c*g+2*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(
1/2)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^2*c^3*ln(c*x+I*(-c^2*x^2+1)^(1/2))*f^2-b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^
(1/2)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^2*c^3*ln((c*x+I*(-c^2*x^2+1)^(1/2))^2*g+2*c*f*(c*x+I*(-c^2*x^2+1)^(1/2))+g)*
f^2-b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^(3/2)*c^2*dilog((-(c*x+I*(-c^2*x^2
+1)^(1/2))*g-c*f+(c^2*f^2-g^2)^(1/2))/(-c*f+(c^2*f^2-g^2)^(1/2)))*f+b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2
)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^(3/2)*c^2*dilog(((c*x+I*(-c^2*x^2+1)^(1/2))*g+c*f+(c^2*f^2-g^2)^(1/2))/(c*f+(c^2
*f^2-g^2)^(1/2)))*f-2*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^2*c*ln(c*x+I*(-c
^2*x^2+1)^(1/2))*g^2+b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)/(c^2*f^2-g^2)^2*c*ln((c*x+I*(-c
^2*x^2+1)^(1/2))^2*g+2*c*f*(c*x+I*(-c^2*x^2+1)^(1/2))+g)*g^2

Fricas [F]

\[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=\int { \frac {b \arccos \left (c x\right ) + a}{\sqrt {-c^{2} d x^{2} + d} {\left (g x + f\right )}^{2}} \,d x } \]

[In]

integrate((a+b*arccos(c*x))/(g*x+f)^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*arccos(c*x) + a)/(c^2*d*g^2*x^4 + 2*c^2*d*f*g*x^3 - 2*d*f*g*x - d*f^2 + (c^2
*d*f^2 - d*g^2)*x^2), x)

Sympy [F]

\[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=\int \frac {a + b \operatorname {acos}{\left (c x \right )}}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (f + g x\right )^{2}}\, dx \]

[In]

integrate((a+b*acos(c*x))/(g*x+f)**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*acos(c*x))/(sqrt(-d*(c*x - 1)*(c*x + 1))*(f + g*x)**2), x)

Maxima [F]

\[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=\int { \frac {b \arccos \left (c x\right ) + a}{\sqrt {-c^{2} d x^{2} + d} {\left (g x + f\right )}^{2}} \,d x } \]

[In]

integrate((a+b*arccos(c*x))/(g*x+f)^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arccos(c*x) + a)/(sqrt(-c^2*d*x^2 + d)*(g*x + f)^2), x)

Giac [F]

\[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=\int { \frac {b \arccos \left (c x\right ) + a}{\sqrt {-c^{2} d x^{2} + d} {\left (g x + f\right )}^{2}} \,d x } \]

[In]

integrate((a+b*arccos(c*x))/(g*x+f)^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccos(c*x) + a)/(sqrt(-c^2*d*x^2 + d)*(g*x + f)^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arccos (c x)}{(f+g x)^2 \sqrt {d-c^2 d x^2}} \, dx=\int \frac {a+b\,\mathrm {acos}\left (c\,x\right )}{{\left (f+g\,x\right )}^2\,\sqrt {d-c^2\,d\,x^2}} \,d x \]

[In]

int((a + b*acos(c*x))/((f + g*x)^2*(d - c^2*d*x^2)^(1/2)),x)

[Out]

int((a + b*acos(c*x))/((f + g*x)^2*(d - c^2*d*x^2)^(1/2)), x)