\(\int e^{i n \arctan (a x)} x^3 \, dx\) [154]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 171 \[ \int e^{i n \arctan (a x)} x^3 \, dx=\frac {x^2 (1-i a x)^{1-\frac {n}{2}} (1+i a x)^{\frac {2+n}{2}}}{4 a^2}-\frac {(1-i a x)^{1-\frac {n}{2}} (1+i a x)^{\frac {2+n}{2}} \left (6+n^2+2 i a n x\right )}{24 a^4}-\frac {2^{-2+\frac {n}{2}} n \left (8+n^2\right ) (1-i a x)^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (1-\frac {n}{2},-\frac {n}{2},2-\frac {n}{2},\frac {1}{2} (1-i a x)\right )}{3 a^4 (2-n)} \]

[Out]

1/4*x^2*(1-I*a*x)^(1-1/2*n)*(1+I*a*x)^(1+1/2*n)/a^2-1/24*(1-I*a*x)^(1-1/2*n)*(1+I*a*x)^(1+1/2*n)*(6+n^2+2*I*a*
n*x)/a^4-1/3*2^(-2+1/2*n)*n*(n^2+8)*(1-I*a*x)^(1-1/2*n)*hypergeom([-1/2*n, 1-1/2*n],[2-1/2*n],1/2-1/2*I*a*x)/a
^4/(2-n)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {5170, 102, 152, 71} \[ \int e^{i n \arctan (a x)} x^3 \, dx=-\frac {2^{\frac {n}{2}-2} n \left (n^2+8\right ) (1-i a x)^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (1-\frac {n}{2},-\frac {n}{2},2-\frac {n}{2},\frac {1}{2} (1-i a x)\right )}{3 a^4 (2-n)}-\frac {(1+i a x)^{\frac {n+2}{2}} \left (2 i a n x+n^2+6\right ) (1-i a x)^{1-\frac {n}{2}}}{24 a^4}+\frac {x^2 (1+i a x)^{\frac {n+2}{2}} (1-i a x)^{1-\frac {n}{2}}}{4 a^2} \]

[In]

Int[E^(I*n*ArcTan[a*x])*x^3,x]

[Out]

(x^2*(1 - I*a*x)^(1 - n/2)*(1 + I*a*x)^((2 + n)/2))/(4*a^2) - ((1 - I*a*x)^(1 - n/2)*(1 + I*a*x)^((2 + n)/2)*(
6 + n^2 + (2*I)*a*n*x))/(24*a^4) - (2^(-2 + n/2)*n*(8 + n^2)*(1 - I*a*x)^(1 - n/2)*Hypergeometric2F1[1 - n/2,
-1/2*n, 2 - n/2, (1 - I*a*x)/2])/(3*a^4*(2 - n))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> Simp[(-(a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x))*(a + b*x)
^(m + 1)*((c + d*x)^(n + 1)/(b^2*d^2*(m + n + 2)*(m + n + 3))), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d
*(n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1
)*(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)
^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 5170

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 - I*a*x)^(I*(n/2))/(1 + I*a*x)^(I*(n/2))
), x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[(I*n - 1)/2]

Rubi steps \begin{align*} \text {integral}& = \int x^3 (1-i a x)^{-n/2} (1+i a x)^{n/2} \, dx \\ & = \frac {x^2 (1-i a x)^{1-\frac {n}{2}} (1+i a x)^{\frac {2+n}{2}}}{4 a^2}+\frac {\int x (1-i a x)^{-n/2} (1+i a x)^{n/2} (-2-i a n x) \, dx}{4 a^2} \\ & = \frac {x^2 (1-i a x)^{1-\frac {n}{2}} (1+i a x)^{\frac {2+n}{2}}}{4 a^2}-\frac {(1-i a x)^{1-\frac {n}{2}} (1+i a x)^{\frac {2+n}{2}} \left (6+n^2+2 i a n x\right )}{24 a^4}+\frac {\left (i n \left (8+n^2\right )\right ) \int (1-i a x)^{-n/2} (1+i a x)^{n/2} \, dx}{24 a^3} \\ & = \frac {x^2 (1-i a x)^{1-\frac {n}{2}} (1+i a x)^{\frac {2+n}{2}}}{4 a^2}-\frac {(1-i a x)^{1-\frac {n}{2}} (1+i a x)^{\frac {2+n}{2}} \left (6+n^2+2 i a n x\right )}{24 a^4}-\frac {2^{-2+\frac {n}{2}} n \left (8+n^2\right ) (1-i a x)^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (1-\frac {n}{2},-\frac {n}{2},2-\frac {n}{2},\frac {1}{2} (1-i a x)\right )}{3 a^4 (2-n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.23 \[ \int e^{i n \arctan (a x)} x^3 \, dx=\frac {(1-i a x)^{-n/2} (i+a x) \left (-i 2^{3+\frac {n}{2}} n \operatorname {Hypergeometric2F1}\left (-2-\frac {n}{2},1-\frac {n}{2},2-\frac {n}{2},\frac {1}{2} (1-i a x)\right )+i 2^{3+\frac {n}{2}} (-1+n) \operatorname {Hypergeometric2F1}\left (-1-\frac {n}{2},1-\frac {n}{2},2-\frac {n}{2},\frac {1}{2} (1-i a x)\right )+(-2+n) \left (a^2 x^2 (1+i a x)^{n/2} (-i+a x)-i 2^{1+\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (1-\frac {n}{2},-\frac {n}{2},2-\frac {n}{2},\frac {1}{2} (1-i a x)\right )\right )\right )}{4 a^4 (-2+n)} \]

[In]

Integrate[E^(I*n*ArcTan[a*x])*x^3,x]

[Out]

((I + a*x)*((-I)*2^(3 + n/2)*n*Hypergeometric2F1[-2 - n/2, 1 - n/2, 2 - n/2, (1 - I*a*x)/2] + I*2^(3 + n/2)*(-
1 + n)*Hypergeometric2F1[-1 - n/2, 1 - n/2, 2 - n/2, (1 - I*a*x)/2] + (-2 + n)*(a^2*x^2*(1 + I*a*x)^(n/2)*(-I
+ a*x) - I*2^(1 + n/2)*Hypergeometric2F1[1 - n/2, -1/2*n, 2 - n/2, (1 - I*a*x)/2])))/(4*a^4*(-2 + n)*(1 - I*a*
x)^(n/2))

Maple [F]

\[\int {\mathrm e}^{i n \arctan \left (a x \right )} x^{3}d x\]

[In]

int(exp(I*n*arctan(a*x))*x^3,x)

[Out]

int(exp(I*n*arctan(a*x))*x^3,x)

Fricas [F]

\[ \int e^{i n \arctan (a x)} x^3 \, dx=\int { x^{3} e^{\left (i \, n \arctan \left (a x\right )\right )} \,d x } \]

[In]

integrate(exp(I*n*arctan(a*x))*x^3,x, algorithm="fricas")

[Out]

integral(x^3/(-(a*x + I)/(a*x - I))^(1/2*n), x)

Sympy [F]

\[ \int e^{i n \arctan (a x)} x^3 \, dx=\int x^{3} e^{i n \operatorname {atan}{\left (a x \right )}}\, dx \]

[In]

integrate(exp(I*n*atan(a*x))*x**3,x)

[Out]

Integral(x**3*exp(I*n*atan(a*x)), x)

Maxima [F]

\[ \int e^{i n \arctan (a x)} x^3 \, dx=\int { x^{3} e^{\left (i \, n \arctan \left (a x\right )\right )} \,d x } \]

[In]

integrate(exp(I*n*arctan(a*x))*x^3,x, algorithm="maxima")

[Out]

integrate(x^3*e^(I*n*arctan(a*x)), x)

Giac [F]

\[ \int e^{i n \arctan (a x)} x^3 \, dx=\int { x^{3} e^{\left (i \, n \arctan \left (a x\right )\right )} \,d x } \]

[In]

integrate(exp(I*n*arctan(a*x))*x^3,x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int e^{i n \arctan (a x)} x^3 \, dx=\int x^3\,{\mathrm {e}}^{n\,\mathrm {atan}\left (a\,x\right )\,1{}\mathrm {i}} \,d x \]

[In]

int(x^3*exp(n*atan(a*x)*1i),x)

[Out]

int(x^3*exp(n*atan(a*x)*1i), x)