\(\int \frac {e^{i \arctan (a+b x)}}{x} \, dx\) [167]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 89 \[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=i \text {arcsinh}(a+b x)-\frac {2 \sqrt {i-a} \text {arctanh}\left (\frac {\sqrt {i+a} \sqrt {1+i a+i b x}}{\sqrt {i-a} \sqrt {1-i a-i b x}}\right )}{\sqrt {i+a}} \]

[Out]

I*arcsinh(b*x+a)-2*arctanh((I+a)^(1/2)*(1+I*a+I*b*x)^(1/2)/(I-a)^(1/2)/(1-I*a-I*b*x)^(1/2))*(I-a)^(1/2)/(I+a)^
(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5203, 132, 55, 633, 221, 12, 95, 214} \[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=i \text {arcsinh}(a+b x)-\frac {2 \sqrt {-a+i} \text {arctanh}\left (\frac {\sqrt {a+i} \sqrt {i a+i b x+1}}{\sqrt {-a+i} \sqrt {-i a-i b x+1}}\right )}{\sqrt {a+i}} \]

[In]

Int[E^(I*ArcTan[a + b*x])/x,x]

[Out]

I*ArcSinh[a + b*x] - (2*Sqrt[I - a]*ArcTanh[(Sqrt[I + a]*Sqrt[1 + I*a + I*b*x])/(Sqrt[I - a]*Sqrt[1 - I*a - I*
b*x])])/Sqrt[I + a]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 55

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[1/Sqrt[a*c - b*(a - c)*x - b^2*x^2]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b + d, 0] && GtQ[a + c, 0]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 132

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[b*d^(m
+ n)*f^p, Int[(a + b*x)^(m - 1)/(c + d*x)^m, x], x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandTo
Sum[(a + b*x)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
] && EqQ[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 0] || SumSimplerQ[m, -1] ||  !(GtQ[n, 0] || SumSimplerQ[n,
 -1]))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 633

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*(-4*(c/(b^2 - 4*a*c)))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 5203

Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[(d + e*x)^m*((1 -
 I*a*c - I*b*c*x)^(I*(n/2))/(1 + I*a*c + I*b*c*x)^(I*(n/2))), x] /; FreeQ[{a, b, c, d, e, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sqrt {1+i a+i b x}}{x \sqrt {1-i a-i b x}} \, dx \\ & = (i b) \int \frac {1}{\sqrt {1-i a-i b x} \sqrt {1+i a+i b x}} \, dx+\int \frac {1+i a}{x \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}} \, dx \\ & = (1+i a) \int \frac {1}{x \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}} \, dx+(i b) \int \frac {1}{\sqrt {(1-i a) (1+i a)+2 a b x+b^2 x^2}} \, dx \\ & = (2 (1+i a)) \text {Subst}\left (\int \frac {1}{-1-i a-(-1+i a) x^2} \, dx,x,\frac {\sqrt {1+i a+i b x}}{\sqrt {1-i a-i b x}}\right )+\frac {i \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{4 b^2}}} \, dx,x,2 a b+2 b^2 x\right )}{2 b} \\ & = i \text {arcsinh}(a+b x)-\frac {2 \sqrt {i-a} \text {arctanh}\left (\frac {\sqrt {i+a} \sqrt {1+i a+i b x}}{\sqrt {i-a} \sqrt {1-i a-i b x}}\right )}{\sqrt {i+a}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.60 \[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=\frac {2 (-1)^{3/4} \sqrt {-i b} \text {arcsinh}\left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {b} \sqrt {-i (i+a+b x)}}{\sqrt {-i b}}\right )}{\sqrt {b}}-\frac {2 \sqrt {-1-i a} \text {arctanh}\left (\frac {\sqrt {-1-i a} \sqrt {-i (i+a+b x)}}{\sqrt {-1+i a} \sqrt {1+i a+i b x}}\right )}{\sqrt {-1+i a}} \]

[In]

Integrate[E^(I*ArcTan[a + b*x])/x,x]

[Out]

(2*(-1)^(3/4)*Sqrt[(-I)*b]*ArcSinh[((1/2 + I/2)*Sqrt[b]*Sqrt[(-I)*(I + a + b*x)])/Sqrt[(-I)*b]])/Sqrt[b] - (2*
Sqrt[-1 - I*a]*ArcTanh[(Sqrt[-1 - I*a]*Sqrt[(-I)*(I + a + b*x)])/(Sqrt[-1 + I*a]*Sqrt[1 + I*a + I*b*x])])/Sqrt
[-1 + I*a]

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.20

method result size
default \(\frac {i b \ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{\sqrt {b^{2}}}-\frac {\left (i a +1\right ) \ln \left (\frac {2 a^{2}+2+2 a b x +2 \sqrt {a^{2}+1}\, \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}{x}\right )}{\sqrt {a^{2}+1}}\) \(107\)

[In]

int((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

I*b*ln((b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(b^2)^(1/2)-(1+I*a)/(a^2+1)^(1/2)*ln((2*a^2+2+2*
a*b*x+2*(a^2+1)^(1/2)*(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/x)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 144 vs. \(2 (59) = 118\).

Time = 0.29 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.62 \[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=\sqrt {-\frac {a - i}{a + i}} \log \left (-b x + {\left (i \, a - 1\right )} \sqrt {-\frac {a - i}{a + i}} + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right ) - \sqrt {-\frac {a - i}{a + i}} \log \left (-b x + {\left (-i \, a + 1\right )} \sqrt {-\frac {a - i}{a + i}} + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right ) - i \, \log \left (-b x - a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right ) \]

[In]

integrate((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2)/x,x, algorithm="fricas")

[Out]

sqrt(-(a - I)/(a + I))*log(-b*x + (I*a - 1)*sqrt(-(a - I)/(a + I)) + sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - sqrt
(-(a - I)/(a + I))*log(-b*x + (-I*a + 1)*sqrt(-(a - I)/(a + I)) + sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - I*log(-
b*x - a + sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))

Sympy [F]

\[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=i \left (\int \frac {b}{\sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {i}{x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \frac {a}{x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx\right ) \]

[In]

integrate((1+I*(b*x+a))/(1+(b*x+a)**2)**(1/2)/x,x)

[Out]

I*(Integral(b/sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1), x) + Integral(-I/(x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)),
 x) + Integral(a/(x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x))

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 233 vs. \(2 (59) = 118\).

Time = 0.18 (sec) , antiderivative size = 233, normalized size of antiderivative = 2.62 \[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=-\frac {i \, a \operatorname {arsinh}\left (\frac {2 \, a b x}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2 \, a^{2}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}}\right )}{\sqrt {a^{2} + 1}} - \frac {\operatorname {arsinh}\left (\frac {2 \, a b x}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2 \, a^{2}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}}\right )}{\sqrt {a^{2} + 1}} + i \, \operatorname {arsinh}\left (\frac {2 \, {\left (b^{2} x + a b\right )}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}}}\right ) \]

[In]

integrate((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2)/x,x, algorithm="maxima")

[Out]

-I*a*arcsinh(2*a*b*x/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2*a^2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*a
bs(x)) + 2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)))/sqrt(a^2 + 1) - arcsinh(2*a*b*x/(sqrt(-4*a^2*b^2 + 4*(
a^2 + 1)*b^2)*abs(x)) + 2*a^2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b
^2)*abs(x)))/sqrt(a^2 + 1) + I*arcsinh(2*(b^2*x + a*b)/sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2))

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.26 \[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=-\frac {{\left (-i \, a - 1\right )} \log \left (\frac {{\left | -2 \, x {\left | b \right |} + 2 \, \sqrt {{\left (b x + a\right )}^{2} + 1} - 2 \, \sqrt {a^{2} + 1} \right |}}{{\left | -2 \, x {\left | b \right |} + 2 \, \sqrt {{\left (b x + a\right )}^{2} + 1} + 2 \, \sqrt {a^{2} + 1} \right |}}\right )}{\sqrt {a^{2} + 1}} - \frac {i \, b \log \left (-a b - {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} {\left | b \right |}\right )}{{\left | b \right |}} \]

[In]

integrate((1+I*(b*x+a))/(1+(b*x+a)^2)^(1/2)/x,x, algorithm="giac")

[Out]

-(-I*a - 1)*log(abs(-2*x*abs(b) + 2*sqrt((b*x + a)^2 + 1) - 2*sqrt(a^2 + 1))/abs(-2*x*abs(b) + 2*sqrt((b*x + a
)^2 + 1) + 2*sqrt(a^2 + 1)))/sqrt(a^2 + 1) - I*b*log(-a*b - (x*abs(b) - sqrt((b*x + a)^2 + 1))*abs(b))/abs(b)

Mupad [B] (verification not implemented)

Time = 1.25 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.33 \[ \int \frac {e^{i \arctan (a+b x)}}{x} \, dx=\mathrm {asinh}\left (a+b\,x\right )\,1{}\mathrm {i}-\frac {\ln \left (a\,b+\frac {a^2+1}{x}+\frac {\sqrt {a^2+1}\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2+1}}{x}\right )}{\sqrt {a^2+1}}-\frac {a\,\ln \left (a\,b+\frac {a^2+1}{x}+\frac {\sqrt {a^2+1}\,\sqrt {a^2+2\,a\,b\,x+b^2\,x^2+1}}{x}\right )\,1{}\mathrm {i}}{\sqrt {a^2+1}} \]

[In]

int((a*1i + b*x*1i + 1)/(x*((a + b*x)^2 + 1)^(1/2)),x)

[Out]

asinh(a + b*x)*1i - log(a*b + (a^2 + 1)/x + ((a^2 + 1)^(1/2)*(a^2 + b^2*x^2 + 2*a*b*x + 1)^(1/2))/x)/(a^2 + 1)
^(1/2) - (a*log(a*b + (a^2 + 1)/x + ((a^2 + 1)^(1/2)*(a^2 + b^2*x^2 + 2*a*b*x + 1)^(1/2))/x)*1i)/(a^2 + 1)^(1/
2)