\(\int \frac {e^{2 \arctan (a x)}}{(c+a^2 c x^2)^4} \, dx\) [266]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 123 \[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\frac {9 e^{2 \arctan (a x)}}{160 a c^4}+\frac {e^{2 \arctan (a x)} (1+3 a x)}{20 a c^4 \left (1+a^2 x^2\right )^3}+\frac {3 e^{2 \arctan (a x)} (1+2 a x)}{40 a c^4 \left (1+a^2 x^2\right )^2}+\frac {9 e^{2 \arctan (a x)} (1+a x)}{80 a c^4 \left (1+a^2 x^2\right )} \]

[Out]

9/160*exp(2*arctan(a*x))/a/c^4+1/20*exp(2*arctan(a*x))*(3*a*x+1)/a/c^4/(a^2*x^2+1)^3+3/40*exp(2*arctan(a*x))*(
2*a*x+1)/a/c^4/(a^2*x^2+1)^2+9/80*exp(2*arctan(a*x))*(a*x+1)/a/c^4/(a^2*x^2+1)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {5178, 5179} \[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\frac {9 (a x+1) e^{2 \arctan (a x)}}{80 a c^4 \left (a^2 x^2+1\right )}+\frac {3 (2 a x+1) e^{2 \arctan (a x)}}{40 a c^4 \left (a^2 x^2+1\right )^2}+\frac {(3 a x+1) e^{2 \arctan (a x)}}{20 a c^4 \left (a^2 x^2+1\right )^3}+\frac {9 e^{2 \arctan (a x)}}{160 a c^4} \]

[In]

Int[E^(2*ArcTan[a*x])/(c + a^2*c*x^2)^4,x]

[Out]

(9*E^(2*ArcTan[a*x]))/(160*a*c^4) + (E^(2*ArcTan[a*x])*(1 + 3*a*x))/(20*a*c^4*(1 + a^2*x^2)^3) + (3*E^(2*ArcTa
n[a*x])*(1 + 2*a*x))/(40*a*c^4*(1 + a^2*x^2)^2) + (9*E^(2*ArcTan[a*x])*(1 + a*x))/(80*a*c^4*(1 + a^2*x^2))

Rule 5178

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(n - 2*a*(p + 1)*x)*(c + d*x^2)
^(p + 1)*(E^(n*ArcTan[a*x])/(a*c*(n^2 + 4*(p + 1)^2))), x] + Dist[2*(p + 1)*((2*p + 3)/(c*(n^2 + 4*(p + 1)^2))
), Int[(c + d*x^2)^(p + 1)*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1]
&&  !IntegerQ[I*n] && NeQ[n^2 + 4*(p + 1)^2, 0] && IntegerQ[2*p]

Rule 5179

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[E^(n*ArcTan[a*x])/(a*c*n), x] /; Fre
eQ[{a, c, d, n}, x] && EqQ[d, a^2*c]

Rubi steps \begin{align*} \text {integral}& = \frac {e^{2 \arctan (a x)} (1+3 a x)}{20 a c^4 \left (1+a^2 x^2\right )^3}+\frac {3 \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^3} \, dx}{4 c} \\ & = \frac {e^{2 \arctan (a x)} (1+3 a x)}{20 a c^4 \left (1+a^2 x^2\right )^3}+\frac {3 e^{2 \arctan (a x)} (1+2 a x)}{40 a c^4 \left (1+a^2 x^2\right )^2}+\frac {9 \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^2} \, dx}{20 c^2} \\ & = \frac {e^{2 \arctan (a x)} (1+3 a x)}{20 a c^4 \left (1+a^2 x^2\right )^3}+\frac {3 e^{2 \arctan (a x)} (1+2 a x)}{40 a c^4 \left (1+a^2 x^2\right )^2}+\frac {9 e^{2 \arctan (a x)} (1+a x)}{80 a c^4 \left (1+a^2 x^2\right )}+\frac {9 \int \frac {e^{2 \arctan (a x)}}{c+a^2 c x^2} \, dx}{80 c^3} \\ & = \frac {9 e^{2 \arctan (a x)}}{160 a c^4}+\frac {e^{2 \arctan (a x)} (1+3 a x)}{20 a c^4 \left (1+a^2 x^2\right )^3}+\frac {3 e^{2 \arctan (a x)} (1+2 a x)}{40 a c^4 \left (1+a^2 x^2\right )^2}+\frac {9 e^{2 \arctan (a x)} (1+a x)}{80 a c^4 \left (1+a^2 x^2\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.20 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.99 \[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\frac {8 c e^{2 \arctan (a x)} (1+3 a x)+3 \left (c+a^2 c x^2\right ) \left (4 e^{2 \arctan (a x)} (1+2 a x)+3 (1-i a x)^i (1+i a x)^{-i} (-i+a x) (i+a x) \left (3+2 a x+a^2 x^2\right )\right )}{160 a c^2 \left (c+a^2 c x^2\right )^3} \]

[In]

Integrate[E^(2*ArcTan[a*x])/(c + a^2*c*x^2)^4,x]

[Out]

(8*c*E^(2*ArcTan[a*x])*(1 + 3*a*x) + 3*(c + a^2*c*x^2)*(4*E^(2*ArcTan[a*x])*(1 + 2*a*x) + (3*(1 - I*a*x)^I*(-I
 + a*x)*(I + a*x)*(3 + 2*a*x + a^2*x^2))/(1 + I*a*x)^I))/(160*a*c^2*(c + a^2*c*x^2)^3)

Maple [A] (verified)

Time = 31.91 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.59

method result size
gosper \(\frac {{\mathrm e}^{2 \arctan \left (a x \right )} \left (9 a^{6} x^{6}+18 a^{5} x^{5}+45 a^{4} x^{4}+60 a^{3} x^{3}+75 a^{2} x^{2}+66 a x +47\right )}{160 \left (a^{2} x^{2}+1\right )^{3} c^{4} a}\) \(73\)
parallelrisch \(\frac {9 a^{6} {\mathrm e}^{2 \arctan \left (a x \right )} x^{6}+18 a^{5} {\mathrm e}^{2 \arctan \left (a x \right )} x^{5}+45 a^{4} {\mathrm e}^{2 \arctan \left (a x \right )} x^{4}+60 a^{3} x^{3} {\mathrm e}^{2 \arctan \left (a x \right )}+75 x^{2} {\mathrm e}^{2 \arctan \left (a x \right )} a^{2}+66 \,{\mathrm e}^{2 \arctan \left (a x \right )} a x +47 \,{\mathrm e}^{2 \arctan \left (a x \right )}}{160 c^{4} \left (a^{2} x^{2}+1\right )^{3} a}\) \(116\)

[In]

int(exp(2*arctan(a*x))/(a^2*c*x^2+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/160*exp(2*arctan(a*x))*(9*a^6*x^6+18*a^5*x^5+45*a^4*x^4+60*a^3*x^3+75*a^2*x^2+66*a*x+47)/(a^2*x^2+1)^3/c^4/a

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.77 \[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\frac {{\left (9 \, a^{6} x^{6} + 18 \, a^{5} x^{5} + 45 \, a^{4} x^{4} + 60 \, a^{3} x^{3} + 75 \, a^{2} x^{2} + 66 \, a x + 47\right )} e^{\left (2 \, \arctan \left (a x\right )\right )}}{160 \, {\left (a^{7} c^{4} x^{6} + 3 \, a^{5} c^{4} x^{4} + 3 \, a^{3} c^{4} x^{2} + a c^{4}\right )}} \]

[In]

integrate(exp(2*arctan(a*x))/(a^2*c*x^2+c)^4,x, algorithm="fricas")

[Out]

1/160*(9*a^6*x^6 + 18*a^5*x^5 + 45*a^4*x^4 + 60*a^3*x^3 + 75*a^2*x^2 + 66*a*x + 47)*e^(2*arctan(a*x))/(a^7*c^4
*x^6 + 3*a^5*c^4*x^4 + 3*a^3*c^4*x^2 + a*c^4)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 410 vs. \(2 (112) = 224\).

Time = 7.64 (sec) , antiderivative size = 410, normalized size of antiderivative = 3.33 \[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\begin {cases} \frac {9 a^{6} x^{6} e^{2 \operatorname {atan}{\left (a x \right )}}}{160 a^{7} c^{4} x^{6} + 480 a^{5} c^{4} x^{4} + 480 a^{3} c^{4} x^{2} + 160 a c^{4}} + \frac {18 a^{5} x^{5} e^{2 \operatorname {atan}{\left (a x \right )}}}{160 a^{7} c^{4} x^{6} + 480 a^{5} c^{4} x^{4} + 480 a^{3} c^{4} x^{2} + 160 a c^{4}} + \frac {45 a^{4} x^{4} e^{2 \operatorname {atan}{\left (a x \right )}}}{160 a^{7} c^{4} x^{6} + 480 a^{5} c^{4} x^{4} + 480 a^{3} c^{4} x^{2} + 160 a c^{4}} + \frac {60 a^{3} x^{3} e^{2 \operatorname {atan}{\left (a x \right )}}}{160 a^{7} c^{4} x^{6} + 480 a^{5} c^{4} x^{4} + 480 a^{3} c^{4} x^{2} + 160 a c^{4}} + \frac {75 a^{2} x^{2} e^{2 \operatorname {atan}{\left (a x \right )}}}{160 a^{7} c^{4} x^{6} + 480 a^{5} c^{4} x^{4} + 480 a^{3} c^{4} x^{2} + 160 a c^{4}} + \frac {66 a x e^{2 \operatorname {atan}{\left (a x \right )}}}{160 a^{7} c^{4} x^{6} + 480 a^{5} c^{4} x^{4} + 480 a^{3} c^{4} x^{2} + 160 a c^{4}} + \frac {47 e^{2 \operatorname {atan}{\left (a x \right )}}}{160 a^{7} c^{4} x^{6} + 480 a^{5} c^{4} x^{4} + 480 a^{3} c^{4} x^{2} + 160 a c^{4}} & \text {for}\: a \neq 0 \\\frac {x}{c^{4}} & \text {otherwise} \end {cases} \]

[In]

integrate(exp(2*atan(a*x))/(a**2*c*x**2+c)**4,x)

[Out]

Piecewise((9*a**6*x**6*exp(2*atan(a*x))/(160*a**7*c**4*x**6 + 480*a**5*c**4*x**4 + 480*a**3*c**4*x**2 + 160*a*
c**4) + 18*a**5*x**5*exp(2*atan(a*x))/(160*a**7*c**4*x**6 + 480*a**5*c**4*x**4 + 480*a**3*c**4*x**2 + 160*a*c*
*4) + 45*a**4*x**4*exp(2*atan(a*x))/(160*a**7*c**4*x**6 + 480*a**5*c**4*x**4 + 480*a**3*c**4*x**2 + 160*a*c**4
) + 60*a**3*x**3*exp(2*atan(a*x))/(160*a**7*c**4*x**6 + 480*a**5*c**4*x**4 + 480*a**3*c**4*x**2 + 160*a*c**4)
+ 75*a**2*x**2*exp(2*atan(a*x))/(160*a**7*c**4*x**6 + 480*a**5*c**4*x**4 + 480*a**3*c**4*x**2 + 160*a*c**4) +
66*a*x*exp(2*atan(a*x))/(160*a**7*c**4*x**6 + 480*a**5*c**4*x**4 + 480*a**3*c**4*x**2 + 160*a*c**4) + 47*exp(2
*atan(a*x))/(160*a**7*c**4*x**6 + 480*a**5*c**4*x**4 + 480*a**3*c**4*x**2 + 160*a*c**4), Ne(a, 0)), (x/c**4, T
rue))

Maxima [F]

\[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\int { \frac {e^{\left (2 \, \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{4}} \,d x } \]

[In]

integrate(exp(2*arctan(a*x))/(a^2*c*x^2+c)^4,x, algorithm="maxima")

[Out]

integrate(e^(2*arctan(a*x))/(a^2*c*x^2 + c)^4, x)

Giac [F]

\[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\int { \frac {e^{\left (2 \, \arctan \left (a x\right )\right )}}{{\left (a^{2} c x^{2} + c\right )}^{4}} \,d x } \]

[In]

integrate(exp(2*arctan(a*x))/(a^2*c*x^2+c)^4,x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 0.78 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.90 \[ \int \frac {e^{2 \arctan (a x)}}{\left (c+a^2 c x^2\right )^4} \, dx=\frac {9\,{\mathrm {e}}^{2\,\mathrm {atan}\left (a\,x\right )}}{160\,a\,c^4}+\frac {9\,{\mathrm {e}}^{2\,\mathrm {atan}\left (a\,x\right )}\,\left (a\,x+1\right )}{80\,a\,c^4\,\left (a^2\,x^2+1\right )}+\frac {3\,{\mathrm {e}}^{2\,\mathrm {atan}\left (a\,x\right )}\,\left (2\,a\,x+1\right )}{40\,a\,c^4\,{\left (a^2\,x^2+1\right )}^2}+\frac {{\mathrm {e}}^{2\,\mathrm {atan}\left (a\,x\right )}\,\left (3\,a\,x+1\right )}{20\,a\,c^4\,{\left (a^2\,x^2+1\right )}^3} \]

[In]

int(exp(2*atan(a*x))/(c + a^2*c*x^2)^4,x)

[Out]

(9*exp(2*atan(a*x)))/(160*a*c^4) + (9*exp(2*atan(a*x))*(a*x + 1))/(80*a*c^4*(a^2*x^2 + 1)) + (3*exp(2*atan(a*x
))*(2*a*x + 1))/(40*a*c^4*(a^2*x^2 + 1)^2) + (exp(2*atan(a*x))*(3*a*x + 1))/(20*a*c^4*(a^2*x^2 + 1)^3)