\(\int e^{n \arctan (a x)} (c+a^2 c x^2)^p \, dx\) [371]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 115 \[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\frac {2^{1-\frac {i n}{2}+p} (1-i a x)^{1+\frac {i n}{2}+p} \left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p \operatorname {Hypergeometric2F1}\left (\frac {i n}{2}-p,1+\frac {i n}{2}+p,2+\frac {i n}{2}+p,\frac {1}{2} (1-i a x)\right )}{a (n-2 i (1+p))} \]

[Out]

2^(1-1/2*I*n+p)*(1-I*a*x)^(1+1/2*I*n+p)*(a^2*c*x^2+c)^p*hypergeom([1/2*I*n-p, 1+1/2*I*n+p],[2+1/2*I*n+p],1/2-1
/2*I*a*x)/a/(n-2*I*(p+1))/((a^2*x^2+1)^p)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5184, 5181, 71} \[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\frac {2^{-\frac {i n}{2}+p+1} \left (a^2 x^2+1\right )^{-p} \left (a^2 c x^2+c\right )^p (1-i a x)^{\frac {i n}{2}+p+1} \operatorname {Hypergeometric2F1}\left (\frac {i n}{2}-p,\frac {i n}{2}+p+1,\frac {i n}{2}+p+2,\frac {1}{2} (1-i a x)\right )}{a (n-2 i (p+1))} \]

[In]

Int[E^(n*ArcTan[a*x])*(c + a^2*c*x^2)^p,x]

[Out]

(2^(1 - (I/2)*n + p)*(1 - I*a*x)^(1 + (I/2)*n + p)*(c + a^2*c*x^2)^p*Hypergeometric2F1[(I/2)*n - p, 1 + (I/2)*
n + p, 2 + (I/2)*n + p, (1 - I*a*x)/2])/(a*(n - (2*I)*(1 + p))*(1 + a^2*x^2)^p)

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 5181

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - I*a*x)^(p + I*(n
/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c,
 0])

Rule 5184

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[c^IntPart[p]*((c + d*x^2)^FracP
art[p]/(1 + a^2*x^2)^FracPart[p]), Int[(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
&& EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = \left (\left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p\right ) \int e^{n \arctan (a x)} \left (1+a^2 x^2\right )^p \, dx \\ & = \left (\left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p\right ) \int (1-i a x)^{\frac {i n}{2}+p} (1+i a x)^{-\frac {i n}{2}+p} \, dx \\ & = \frac {2^{1-\frac {i n}{2}+p} (1-i a x)^{1+\frac {i n}{2}+p} \left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p \operatorname {Hypergeometric2F1}\left (\frac {i n}{2}-p,1+\frac {i n}{2}+p,2+\frac {i n}{2}+p,\frac {1}{2} (1-i a x)\right )}{a (n-2 i (1+p))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00 \[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\frac {2^{1-\frac {i n}{2}+p} (1-i a x)^{1+\frac {i n}{2}+p} \left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p \operatorname {Hypergeometric2F1}\left (\frac {i n}{2}-p,1+\frac {i n}{2}+p,2+\frac {i n}{2}+p,\frac {1}{2} (1-i a x)\right )}{a (n-2 i (1+p))} \]

[In]

Integrate[E^(n*ArcTan[a*x])*(c + a^2*c*x^2)^p,x]

[Out]

(2^(1 - (I/2)*n + p)*(1 - I*a*x)^(1 + (I/2)*n + p)*(c + a^2*c*x^2)^p*Hypergeometric2F1[(I/2)*n - p, 1 + (I/2)*
n + p, 2 + (I/2)*n + p, (1 - I*a*x)/2])/(a*(n - (2*I)*(1 + p))*(1 + a^2*x^2)^p)

Maple [F]

\[\int {\mathrm e}^{n \arctan \left (a x \right )} \left (a^{2} c \,x^{2}+c \right )^{p}d x\]

[In]

int(exp(n*arctan(a*x))*(a^2*c*x^2+c)^p,x)

[Out]

int(exp(n*arctan(a*x))*(a^2*c*x^2+c)^p,x)

Fricas [F]

\[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\int { {\left (a^{2} c x^{2} + c\right )}^{p} e^{\left (n \arctan \left (a x\right )\right )} \,d x } \]

[In]

integrate(exp(n*arctan(a*x))*(a^2*c*x^2+c)^p,x, algorithm="fricas")

[Out]

integral((a^2*c*x^2 + c)^p*e^(n*arctan(a*x)), x)

Sympy [F]

\[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\int \left (c \left (a^{2} x^{2} + 1\right )\right )^{p} e^{n \operatorname {atan}{\left (a x \right )}}\, dx \]

[In]

integrate(exp(n*atan(a*x))*(a**2*c*x**2+c)**p,x)

[Out]

Integral((c*(a**2*x**2 + 1))**p*exp(n*atan(a*x)), x)

Maxima [F]

\[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\int { {\left (a^{2} c x^{2} + c\right )}^{p} e^{\left (n \arctan \left (a x\right )\right )} \,d x } \]

[In]

integrate(exp(n*arctan(a*x))*(a^2*c*x^2+c)^p,x, algorithm="maxima")

[Out]

integrate((a^2*c*x^2 + c)^p*e^(n*arctan(a*x)), x)

Giac [F]

\[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\int { {\left (a^{2} c x^{2} + c\right )}^{p} e^{\left (n \arctan \left (a x\right )\right )} \,d x } \]

[In]

integrate(exp(n*arctan(a*x))*(a^2*c*x^2+c)^p,x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int e^{n \arctan (a x)} \left (c+a^2 c x^2\right )^p \, dx=\int {\mathrm {e}}^{n\,\mathrm {atan}\left (a\,x\right )}\,{\left (c\,a^2\,x^2+c\right )}^p \,d x \]

[In]

int(exp(n*atan(a*x))*(c + a^2*c*x^2)^p,x)

[Out]

int(exp(n*atan(a*x))*(c + a^2*c*x^2)^p, x)