\(\int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx\) [236]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 224 \[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=-\frac {2 a^5 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}+\frac {8 a^3 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}-\frac {4 a^3 b \text {sech}(x)}{\left (a^2+b^2\right )^3}+\frac {2 a b \text {sech}^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {a^4 b \cosh (x)}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}+\frac {\left (a^2-b^2\right ) \tanh (x)}{\left (a^2+b^2\right )^2}-\frac {\left (2 a^4-3 a^2 b^2-b^4\right ) \tanh (x)}{\left (a^2+b^2\right )^3}-\frac {\left (a^2-b^2\right ) \tanh ^3(x)}{3 \left (a^2+b^2\right )^2} \]

[Out]

-2*a^5*arctanh((b-a*tanh(1/2*x))/(a^2+b^2)^(1/2))/(a^2+b^2)^(7/2)+8*a^3*b^2*arctanh((b-a*tanh(1/2*x))/(a^2+b^2
)^(1/2))/(a^2+b^2)^(7/2)-4*a^3*b*sech(x)/(a^2+b^2)^3+2/3*a*b*sech(x)^3/(a^2+b^2)^2-a^4*b*cosh(x)/(a^2+b^2)^3/(
a+b*sinh(x))+(a^2-b^2)*tanh(x)/(a^2+b^2)^2-(2*a^4-3*a^2*b^2-b^4)*tanh(x)/(a^2+b^2)^3-1/3*(a^2-b^2)*tanh(x)^3/(
a^2+b^2)^2

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {2810, 2743, 12, 2739, 632, 212, 2748, 3852, 8} \[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=-\frac {\left (a^2-b^2\right ) \tanh ^3(x)}{3 \left (a^2+b^2\right )^2}+\frac {\left (a^2-b^2\right ) \tanh (x)}{\left (a^2+b^2\right )^2}+\frac {2 a b \text {sech}^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {2 a^5 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}-\frac {a^4 b \cosh (x)}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}-\frac {\left (2 a^4-3 a^2 b^2-b^4\right ) \tanh (x)}{\left (a^2+b^2\right )^3}+\frac {8 a^3 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}-\frac {4 a^3 b \text {sech}(x)}{\left (a^2+b^2\right )^3} \]

[In]

Int[Tanh[x]^4/(a + b*Sinh[x])^2,x]

[Out]

(-2*a^5*ArcTanh[(b - a*Tanh[x/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(7/2) + (8*a^3*b^2*ArcTanh[(b - a*Tanh[x/2])/S
qrt[a^2 + b^2]])/(a^2 + b^2)^(7/2) - (4*a^3*b*Sech[x])/(a^2 + b^2)^3 + (2*a*b*Sech[x]^3)/(3*(a^2 + b^2)^2) - (
a^4*b*Cosh[x])/((a^2 + b^2)^3*(a + b*Sinh[x])) + ((a^2 - b^2)*Tanh[x])/(a^2 + b^2)^2 - ((2*a^4 - 3*a^2*b^2 - b
^4)*Tanh[x])/(a^2 + b^2)^3 - ((a^2 - b^2)*Tanh[x]^3)/(3*(a^2 + b^2)^2)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2743

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
+ 1)/(d*(n + 1)*(a^2 - b^2))), x] + Dist[1/((n + 1)*(a^2 - b^2)), Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n +
 1) - b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Integ
erQ[2*n]

Rule 2748

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b)*((g*Co
s[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x
] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2810

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Int[ExpandIntegrand
[Sin[e + f*x]^p*((a + b*Sin[e + f*x])^m/(1 - Sin[e + f*x]^2)^(p/2)), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a
^2 - b^2, 0] && IntegersQ[m, p/2]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a^4}{\left (a^2+b^2\right )^2 (a+b \sinh (x))^2}-\frac {4 a^3 b^2}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}+\frac {\text {sech}^4(x) \left (a^2 \left (1-\frac {b^2}{a^2}\right )-2 a b \sinh (x)\right )}{\left (a^2+b^2\right )^2}+\frac {\text {sech}^2(x) \left (-2 a^4 \left (1-\frac {3 a^2 b^2+b^4}{2 a^4}\right )+4 a^3 b \sinh (x)\right )}{\left (a^2+b^2\right )^3}\right ) \, dx \\ & = \frac {\int \text {sech}^2(x) \left (-2 a^4 \left (1-\frac {3 a^2 b^2+b^4}{2 a^4}\right )+4 a^3 b \sinh (x)\right ) \, dx}{\left (a^2+b^2\right )^3}-\frac {\left (4 a^3 b^2\right ) \int \frac {1}{a+b \sinh (x)} \, dx}{\left (a^2+b^2\right )^3}+\frac {\int \text {sech}^4(x) \left (a^2 \left (1-\frac {b^2}{a^2}\right )-2 a b \sinh (x)\right ) \, dx}{\left (a^2+b^2\right )^2}+\frac {a^4 \int \frac {1}{(a+b \sinh (x))^2} \, dx}{\left (a^2+b^2\right )^2} \\ & = -\frac {4 a^3 b \text {sech}(x)}{\left (a^2+b^2\right )^3}+\frac {2 a b \text {sech}^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {a^4 b \cosh (x)}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}+\frac {a^4 \int \frac {a}{a+b \sinh (x)} \, dx}{\left (a^2+b^2\right )^3}-\frac {\left (8 a^3 b^2\right ) \text {Subst}\left (\int \frac {1}{a+2 b x-a x^2} \, dx,x,\tanh \left (\frac {x}{2}\right )\right )}{\left (a^2+b^2\right )^3}+\frac {\left (a^2-b^2\right ) \int \text {sech}^4(x) \, dx}{\left (a^2+b^2\right )^2}-\frac {\left (2 a^4-3 a^2 b^2-b^4\right ) \int \text {sech}^2(x) \, dx}{\left (a^2+b^2\right )^3} \\ & = -\frac {4 a^3 b \text {sech}(x)}{\left (a^2+b^2\right )^3}+\frac {2 a b \text {sech}^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {a^4 b \cosh (x)}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}+\frac {a^5 \int \frac {1}{a+b \sinh (x)} \, dx}{\left (a^2+b^2\right )^3}+\frac {\left (16 a^3 b^2\right ) \text {Subst}\left (\int \frac {1}{4 \left (a^2+b^2\right )-x^2} \, dx,x,2 b-2 a \tanh \left (\frac {x}{2}\right )\right )}{\left (a^2+b^2\right )^3}+\frac {\left (i \left (a^2-b^2\right )\right ) \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-i \tanh (x)\right )}{\left (a^2+b^2\right )^2}-\frac {\left (i \left (2 a^4-3 a^2 b^2-b^4\right )\right ) \text {Subst}(\int 1 \, dx,x,-i \tanh (x))}{\left (a^2+b^2\right )^3} \\ & = \frac {8 a^3 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}-\frac {4 a^3 b \text {sech}(x)}{\left (a^2+b^2\right )^3}+\frac {2 a b \text {sech}^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {a^4 b \cosh (x)}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}+\frac {\left (a^2-b^2\right ) \tanh (x)}{\left (a^2+b^2\right )^2}-\frac {\left (2 a^4-3 a^2 b^2-b^4\right ) \tanh (x)}{\left (a^2+b^2\right )^3}-\frac {\left (a^2-b^2\right ) \tanh ^3(x)}{3 \left (a^2+b^2\right )^2}+\frac {\left (2 a^5\right ) \text {Subst}\left (\int \frac {1}{a+2 b x-a x^2} \, dx,x,\tanh \left (\frac {x}{2}\right )\right )}{\left (a^2+b^2\right )^3} \\ & = \frac {8 a^3 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}-\frac {4 a^3 b \text {sech}(x)}{\left (a^2+b^2\right )^3}+\frac {2 a b \text {sech}^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {a^4 b \cosh (x)}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}+\frac {\left (a^2-b^2\right ) \tanh (x)}{\left (a^2+b^2\right )^2}-\frac {\left (2 a^4-3 a^2 b^2-b^4\right ) \tanh (x)}{\left (a^2+b^2\right )^3}-\frac {\left (a^2-b^2\right ) \tanh ^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {\left (4 a^5\right ) \text {Subst}\left (\int \frac {1}{4 \left (a^2+b^2\right )-x^2} \, dx,x,2 b-2 a \tanh \left (\frac {x}{2}\right )\right )}{\left (a^2+b^2\right )^3} \\ & = -\frac {2 a^5 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}+\frac {8 a^3 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{7/2}}-\frac {4 a^3 b \text {sech}(x)}{\left (a^2+b^2\right )^3}+\frac {2 a b \text {sech}^3(x)}{3 \left (a^2+b^2\right )^2}-\frac {a^4 b \cosh (x)}{\left (a^2+b^2\right )^3 (a+b \sinh (x))}+\frac {\left (a^2-b^2\right ) \tanh (x)}{\left (a^2+b^2\right )^2}-\frac {\left (2 a^4-3 a^2 b^2-b^4\right ) \tanh (x)}{\left (a^2+b^2\right )^3}-\frac {\left (a^2-b^2\right ) \tanh ^3(x)}{3 \left (a^2+b^2\right )^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.64 \[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=\frac {\frac {6 a^3 \left (a^2-4 b^2\right ) \arctan \left (\frac {b-a \tanh \left (\frac {x}{2}\right )}{\sqrt {-a^2-b^2}}\right )}{\sqrt {-a^2-b^2}}-12 a^3 b \text {sech}(x)-\frac {3 a^4 b \cosh (x)}{a+b \sinh (x)}+\left (a^2+b^2\right ) \text {sech}^3(x) \left (2 a b+\left (a^2-b^2\right ) \sinh (x)\right )+\left (-4 a^4+9 a^2 b^2+b^4\right ) \tanh (x)}{3 \left (a^2+b^2\right )^3} \]

[In]

Integrate[Tanh[x]^4/(a + b*Sinh[x])^2,x]

[Out]

((6*a^3*(a^2 - 4*b^2)*ArcTan[(b - a*Tanh[x/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2] - 12*a^3*b*Sech[x] - (3*a^4
*b*Cosh[x])/(a + b*Sinh[x]) + (a^2 + b^2)*Sech[x]^3*(2*a*b + (a^2 - b^2)*Sinh[x]) + (-4*a^4 + 9*a^2*b^2 + b^4)
*Tanh[x])/(3*(a^2 + b^2)^3)

Maple [A] (verified)

Time = 2.70 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.09

method result size
default \(-\frac {2 a^{3} \left (\frac {-b^{2} \tanh \left (\frac {x}{2}\right )-a b}{\tanh \left (\frac {x}{2}\right )^{2} a -2 b \tanh \left (\frac {x}{2}\right )-a}-\frac {\left (a^{2}-4 b^{2}\right ) \operatorname {arctanh}\left (\frac {2 a \tanh \left (\frac {x}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{\sqrt {a^{2}+b^{2}}}\right )}{\left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (a^{2}+b^{2}\right )}+\frac {2 \left (-a^{4}+3 a^{2} b^{2}\right ) \tanh \left (\frac {x}{2}\right )^{5}+2 \left (-2 a^{3} b +2 b^{3} a \right ) \tanh \left (\frac {x}{2}\right )^{4}+2 \left (-\frac {10}{3} a^{4}+6 a^{2} b^{2}+\frac {4}{3} b^{4}\right ) \tanh \left (\frac {x}{2}\right )^{3}-16 \tanh \left (\frac {x}{2}\right )^{2} a^{3} b +2 \left (-a^{4}+3 a^{2} b^{2}\right ) \tanh \left (\frac {x}{2}\right )-\frac {20 a^{3} b}{3}+\frac {4 b^{3} a}{3}}{\left (a^{2}+b^{2}\right )^{3} \left (1+\tanh \left (\frac {x}{2}\right )^{2}\right )^{3}}\) \(245\)
risch \(\frac {2 a^{5} {\mathrm e}^{7 x}-8 a^{3} b^{2} {\mathrm e}^{7 x}-14 a^{4} b \,{\mathrm e}^{6 x}-6 a^{2} b^{3} {\mathrm e}^{6 x}-2 b^{5} {\mathrm e}^{6 x}+14 a^{5} {\mathrm e}^{5 x}-\frac {44 a^{3} b^{2} {\mathrm e}^{5 x}}{3}+\frac {4 a \,b^{4} {\mathrm e}^{5 x}}{3}-\frac {82 a^{4} b \,{\mathrm e}^{4 x}}{3}+\frac {14 a^{2} b^{3} {\mathrm e}^{4 x}}{3}+2 b^{5} {\mathrm e}^{4 x}+14 a^{5} {\mathrm e}^{3 x}-\frac {64 a^{3} b^{2} {\mathrm e}^{3 x}}{3}-\frac {16 a \,b^{4} {\mathrm e}^{3 x}}{3}-\frac {70 a^{4} b \,{\mathrm e}^{2 x}}{3}+6 a^{2} b^{3} {\mathrm e}^{2 x}-\frac {2 b^{5} {\mathrm e}^{2 x}}{3}+\frac {22 a^{5} {\mathrm e}^{x}}{3}-4 a^{3} b^{2} {\mathrm e}^{x}-\frac {4 b^{4} {\mathrm e}^{x} a}{3}-\frac {14 a^{4} b}{3}+6 a^{2} b^{3}+\frac {2 b^{5}}{3}}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (1+{\mathrm e}^{2 x}\right )^{3} \left (b \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} a -b \right )}+\frac {a^{5} \ln \left ({\mathrm e}^{x}+\frac {\left (a^{2}+b^{2}\right )^{\frac {7}{2}} a -a^{8}-4 a^{6} b^{2}-6 b^{4} a^{4}-4 a^{2} b^{6}-b^{8}}{b \left (a^{2}+b^{2}\right )^{\frac {7}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {7}{2}}}-\frac {4 a^{3} \ln \left ({\mathrm e}^{x}+\frac {\left (a^{2}+b^{2}\right )^{\frac {7}{2}} a -a^{8}-4 a^{6} b^{2}-6 b^{4} a^{4}-4 a^{2} b^{6}-b^{8}}{b \left (a^{2}+b^{2}\right )^{\frac {7}{2}}}\right ) b^{2}}{\left (a^{2}+b^{2}\right )^{\frac {7}{2}}}-\frac {a^{5} \ln \left ({\mathrm e}^{x}+\frac {\left (a^{2}+b^{2}\right )^{\frac {7}{2}} a +a^{8}+4 a^{6} b^{2}+6 b^{4} a^{4}+4 a^{2} b^{6}+b^{8}}{b \left (a^{2}+b^{2}\right )^{\frac {7}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {7}{2}}}+\frac {4 a^{3} \ln \left ({\mathrm e}^{x}+\frac {\left (a^{2}+b^{2}\right )^{\frac {7}{2}} a +a^{8}+4 a^{6} b^{2}+6 b^{4} a^{4}+4 a^{2} b^{6}+b^{8}}{b \left (a^{2}+b^{2}\right )^{\frac {7}{2}}}\right ) b^{2}}{\left (a^{2}+b^{2}\right )^{\frac {7}{2}}}\) \(578\)

[In]

int(tanh(x)^4/(a+b*sinh(x))^2,x,method=_RETURNVERBOSE)

[Out]

-2*a^3/(a^4+2*a^2*b^2+b^4)/(a^2+b^2)*((-b^2*tanh(1/2*x)-a*b)/(tanh(1/2*x)^2*a-2*b*tanh(1/2*x)-a)-(a^2-4*b^2)/(
a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tanh(1/2*x)-2*b)/(a^2+b^2)^(1/2)))+2/(a^2+b^2)^3*((-a^4+3*a^2*b^2)*tanh(1/2*x)
^5+(-2*a^3*b+2*a*b^3)*tanh(1/2*x)^4+(-10/3*a^4+6*a^2*b^2+4/3*b^4)*tanh(1/2*x)^3-8*tanh(1/2*x)^2*a^3*b+(-a^4+3*
a^2*b^2)*tanh(1/2*x)-10/3*a^3*b+2/3*b^3*a)/(1+tanh(1/2*x)^2)^3

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3534 vs. \(2 (212) = 424\).

Time = 0.32 (sec) , antiderivative size = 3534, normalized size of antiderivative = 15.78 \[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=\text {Too large to display} \]

[In]

integrate(tanh(x)^4/(a+b*sinh(x))^2,x, algorithm="fricas")

[Out]

-1/3*(6*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*cosh(x)^7 + 6*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*sinh(x)^7 - 14*a^6*b + 4*a^4
*b^3 + 20*a^2*b^5 + 2*b^7 - 6*(7*a^6*b + 10*a^4*b^3 + 4*a^2*b^5 + b^7)*cosh(x)^6 - 6*(7*a^6*b + 10*a^4*b^3 + 4
*a^2*b^5 + b^7 - 7*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*cosh(x))*sinh(x)^6 + 2*(21*a^7 - a^5*b^2 - 20*a^3*b^4 + 2*a*b
^6)*cosh(x)^5 + 2*(21*a^7 - a^5*b^2 - 20*a^3*b^4 + 2*a*b^6 + 63*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*cosh(x)^2 - 18*(
7*a^6*b + 10*a^4*b^3 + 4*a^2*b^5 + b^7)*cosh(x))*sinh(x)^5 - 2*(41*a^6*b + 34*a^4*b^3 - 10*a^2*b^5 - 3*b^7)*co
sh(x)^4 - 2*(41*a^6*b + 34*a^4*b^3 - 10*a^2*b^5 - 3*b^7 - 105*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*cosh(x)^3 + 45*(7*
a^6*b + 10*a^4*b^3 + 4*a^2*b^5 + b^7)*cosh(x)^2 - 5*(21*a^7 - a^5*b^2 - 20*a^3*b^4 + 2*a*b^6)*cosh(x))*sinh(x)
^4 + 2*(21*a^7 - 11*a^5*b^2 - 40*a^3*b^4 - 8*a*b^6)*cosh(x)^3 + 2*(21*a^7 - 11*a^5*b^2 - 40*a^3*b^4 - 8*a*b^6
+ 105*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*cosh(x)^4 - 60*(7*a^6*b + 10*a^4*b^3 + 4*a^2*b^5 + b^7)*cosh(x)^3 + 10*(21
*a^7 - a^5*b^2 - 20*a^3*b^4 + 2*a*b^6)*cosh(x)^2 - 4*(41*a^6*b + 34*a^4*b^3 - 10*a^2*b^5 - 3*b^7)*cosh(x))*sin
h(x)^3 - 2*(35*a^6*b + 26*a^4*b^3 - 8*a^2*b^5 + b^7)*cosh(x)^2 - 2*(35*a^6*b + 26*a^4*b^3 - 8*a^2*b^5 + b^7 -
63*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*cosh(x)^5 + 45*(7*a^6*b + 10*a^4*b^3 + 4*a^2*b^5 + b^7)*cosh(x)^4 - 10*(21*a^
7 - a^5*b^2 - 20*a^3*b^4 + 2*a*b^6)*cosh(x)^3 + 6*(41*a^6*b + 34*a^4*b^3 - 10*a^2*b^5 - 3*b^7)*cosh(x)^2 - 3*(
21*a^7 - 11*a^5*b^2 - 40*a^3*b^4 - 8*a*b^6)*cosh(x))*sinh(x)^2 - 3*((a^5*b - 4*a^3*b^3)*cosh(x)^8 + (a^5*b - 4
*a^3*b^3)*sinh(x)^8 + 2*(a^6 - 4*a^4*b^2)*cosh(x)^7 + 2*(a^6 - 4*a^4*b^2 + 4*(a^5*b - 4*a^3*b^3)*cosh(x))*sinh
(x)^7 + 2*(a^5*b - 4*a^3*b^3)*cosh(x)^6 + 2*(a^5*b - 4*a^3*b^3 + 14*(a^5*b - 4*a^3*b^3)*cosh(x)^2 + 7*(a^6 - 4
*a^4*b^2)*cosh(x))*sinh(x)^6 - a^5*b + 4*a^3*b^3 + 6*(a^6 - 4*a^4*b^2)*cosh(x)^5 + 2*(3*a^6 - 12*a^4*b^2 + 28*
(a^5*b - 4*a^3*b^3)*cosh(x)^3 + 21*(a^6 - 4*a^4*b^2)*cosh(x)^2 + 6*(a^5*b - 4*a^3*b^3)*cosh(x))*sinh(x)^5 + 10
*(7*(a^5*b - 4*a^3*b^3)*cosh(x)^4 + 7*(a^6 - 4*a^4*b^2)*cosh(x)^3 + 3*(a^5*b - 4*a^3*b^3)*cosh(x)^2 + 3*(a^6 -
 4*a^4*b^2)*cosh(x))*sinh(x)^4 + 6*(a^6 - 4*a^4*b^2)*cosh(x)^3 + 2*(3*a^6 - 12*a^4*b^2 + 28*(a^5*b - 4*a^3*b^3
)*cosh(x)^5 + 35*(a^6 - 4*a^4*b^2)*cosh(x)^4 + 20*(a^5*b - 4*a^3*b^3)*cosh(x)^3 + 30*(a^6 - 4*a^4*b^2)*cosh(x)
^2)*sinh(x)^3 - 2*(a^5*b - 4*a^3*b^3)*cosh(x)^2 + 2*(14*(a^5*b - 4*a^3*b^3)*cosh(x)^6 - a^5*b + 4*a^3*b^3 + 21
*(a^6 - 4*a^4*b^2)*cosh(x)^5 + 15*(a^5*b - 4*a^3*b^3)*cosh(x)^4 + 30*(a^6 - 4*a^4*b^2)*cosh(x)^3 + 9*(a^6 - 4*
a^4*b^2)*cosh(x))*sinh(x)^2 + 2*(a^6 - 4*a^4*b^2)*cosh(x) + 2*(4*(a^5*b - 4*a^3*b^3)*cosh(x)^7 + 7*(a^6 - 4*a^
4*b^2)*cosh(x)^6 + a^6 - 4*a^4*b^2 + 6*(a^5*b - 4*a^3*b^3)*cosh(x)^5 + 15*(a^6 - 4*a^4*b^2)*cosh(x)^4 + 9*(a^6
 - 4*a^4*b^2)*cosh(x)^2 - 2*(a^5*b - 4*a^3*b^3)*cosh(x))*sinh(x))*sqrt(a^2 + b^2)*log((b^2*cosh(x)^2 + b^2*sin
h(x)^2 + 2*a*b*cosh(x) + 2*a^2 + b^2 + 2*(b^2*cosh(x) + a*b)*sinh(x) + 2*sqrt(a^2 + b^2)*(b*cosh(x) + b*sinh(x
) + a))/(b*cosh(x)^2 + b*sinh(x)^2 + 2*a*cosh(x) + 2*(b*cosh(x) + a)*sinh(x) - b)) + 2*(11*a^7 + 5*a^5*b^2 - 8
*a^3*b^4 - 2*a*b^6)*cosh(x) + 2*(11*a^7 + 5*a^5*b^2 - 8*a^3*b^4 - 2*a*b^6 + 21*(a^7 - 3*a^5*b^2 - 4*a^3*b^4)*c
osh(x)^6 - 18*(7*a^6*b + 10*a^4*b^3 + 4*a^2*b^5 + b^7)*cosh(x)^5 + 5*(21*a^7 - a^5*b^2 - 20*a^3*b^4 + 2*a*b^6)
*cosh(x)^4 - 4*(41*a^6*b + 34*a^4*b^3 - 10*a^2*b^5 - 3*b^7)*cosh(x)^3 + 3*(21*a^7 - 11*a^5*b^2 - 40*a^3*b^4 -
8*a*b^6)*cosh(x)^2 - 2*(35*a^6*b + 26*a^4*b^3 - 8*a^2*b^5 + b^7)*cosh(x))*sinh(x))/(a^8*b + 4*a^6*b^3 + 6*a^4*
b^5 + 4*a^2*b^7 + b^9 - (a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x)^8 - (a^8*b + 4*a^6*b^3 + 6*a
^4*b^5 + 4*a^2*b^7 + b^9)*sinh(x)^8 - 2*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^7 - 2*(a^9 +
 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8 + 4*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x))*sinh
(x)^7 - 2*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x)^6 - 2*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a
^2*b^7 + b^9 + 14*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x)^2 + 7*(a^9 + 4*a^7*b^2 + 6*a^5*b^4
 + 4*a^3*b^6 + a*b^8)*cosh(x))*sinh(x)^6 - 6*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^5 - 2*(
3*a^9 + 12*a^7*b^2 + 18*a^5*b^4 + 12*a^3*b^6 + 3*a*b^8 + 28*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*
cosh(x)^3 + 21*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^2 + 6*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5
+ 4*a^2*b^7 + b^9)*cosh(x))*sinh(x)^5 - 10*(7*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x)^4 + 7*
(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^3 + 3*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b
^9)*cosh(x)^2 + 3*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x))*sinh(x)^4 - 6*(a^9 + 4*a^7*b^2 +
6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^3 - 2*(3*a^9 + 12*a^7*b^2 + 18*a^5*b^4 + 12*a^3*b^6 + 3*a*b^8 + 28*(a^8
*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x)^5 + 35*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)
*cosh(x)^4 + 20*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x)^3 + 30*(a^9 + 4*a^7*b^2 + 6*a^5*b^4
+ 4*a^3*b^6 + a*b^8)*cosh(x)^2)*sinh(x)^3 + 2*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x)^2 + 2*
(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9 - 14*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x
)^6 - 21*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^5 - 15*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a
^2*b^7 + b^9)*cosh(x)^4 - 30*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^3 - 9*(a^9 + 4*a^7*b^2
+ 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x))*sinh(x)^2 - 2*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh
(x) - 2*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8 + 4*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)
*cosh(x)^7 + 7*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^6 + 6*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5
+ 4*a^2*b^7 + b^9)*cosh(x)^5 + 15*(a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^4 + 9*(a^9 + 4*a^7
*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cosh(x)^2 - 2*(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*cosh(x))
*sinh(x))

Sympy [F]

\[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=\int \frac {\tanh ^{4}{\left (x \right )}}{\left (a + b \sinh {\left (x \right )}\right )^{2}}\, dx \]

[In]

integrate(tanh(x)**4/(a+b*sinh(x))**2,x)

[Out]

Integral(tanh(x)**4/(a + b*sinh(x))**2, x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 523 vs. \(2 (212) = 424\).

Time = 0.35 (sec) , antiderivative size = 523, normalized size of antiderivative = 2.33 \[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=\frac {{\left (a^{2} - 4 \, b^{2}\right )} a^{3} \log \left (\frac {b e^{\left (-x\right )} - a - \sqrt {a^{2} + b^{2}}}{b e^{\left (-x\right )} - a + \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} \sqrt {a^{2} + b^{2}}} - \frac {2 \, {\left (7 \, a^{4} b - 9 \, a^{2} b^{3} - b^{5} + {\left (11 \, a^{5} - 6 \, a^{3} b^{2} - 2 \, a b^{4}\right )} e^{\left (-x\right )} + {\left (35 \, a^{4} b - 9 \, a^{2} b^{3} + b^{5}\right )} e^{\left (-2 \, x\right )} + {\left (21 \, a^{5} - 32 \, a^{3} b^{2} - 8 \, a b^{4}\right )} e^{\left (-3 \, x\right )} + {\left (41 \, a^{4} b - 7 \, a^{2} b^{3} - 3 \, b^{5}\right )} e^{\left (-4 \, x\right )} + {\left (21 \, a^{5} - 22 \, a^{3} b^{2} + 2 \, a b^{4}\right )} e^{\left (-5 \, x\right )} + 3 \, {\left (7 \, a^{4} b + 3 \, a^{2} b^{3} + b^{5}\right )} e^{\left (-6 \, x\right )} + 3 \, {\left (a^{5} - 4 \, a^{3} b^{2}\right )} e^{\left (-7 \, x\right )}\right )}}{3 \, {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7} + 2 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} e^{\left (-x\right )} + 2 \, {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} e^{\left (-2 \, x\right )} + 6 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} e^{\left (-3 \, x\right )} + 6 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} e^{\left (-5 \, x\right )} - 2 \, {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} e^{\left (-6 \, x\right )} + 2 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} e^{\left (-7 \, x\right )} - {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} e^{\left (-8 \, x\right )}\right )}} \]

[In]

integrate(tanh(x)^4/(a+b*sinh(x))^2,x, algorithm="maxima")

[Out]

(a^2 - 4*b^2)*a^3*log((b*e^(-x) - a - sqrt(a^2 + b^2))/(b*e^(-x) - a + sqrt(a^2 + b^2)))/((a^6 + 3*a^4*b^2 + 3
*a^2*b^4 + b^6)*sqrt(a^2 + b^2)) - 2/3*(7*a^4*b - 9*a^2*b^3 - b^5 + (11*a^5 - 6*a^3*b^2 - 2*a*b^4)*e^(-x) + (3
5*a^4*b - 9*a^2*b^3 + b^5)*e^(-2*x) + (21*a^5 - 32*a^3*b^2 - 8*a*b^4)*e^(-3*x) + (41*a^4*b - 7*a^2*b^3 - 3*b^5
)*e^(-4*x) + (21*a^5 - 22*a^3*b^2 + 2*a*b^4)*e^(-5*x) + 3*(7*a^4*b + 3*a^2*b^3 + b^5)*e^(-6*x) + 3*(a^5 - 4*a^
3*b^2)*e^(-7*x))/(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7 + 2*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*e^(-x) + 2*(a^
6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*e^(-2*x) + 6*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*e^(-3*x) + 6*(a^7 + 3*a^
5*b^2 + 3*a^3*b^4 + a*b^6)*e^(-5*x) - 2*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*e^(-6*x) + 2*(a^7 + 3*a^5*b^2 +
3*a^3*b^4 + a*b^6)*e^(-7*x) - (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*e^(-8*x))

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.30 \[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=\frac {{\left (a^{5} - 4 \, a^{3} b^{2}\right )} \log \left (\frac {{\left | 2 \, b e^{x} + 2 \, a - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{x} + 2 \, a + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} \sqrt {a^{2} + b^{2}}} + \frac {2 \, {\left (a^{5} e^{x} - a^{4} b\right )}}{{\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} {\left (b e^{\left (2 \, x\right )} + 2 \, a e^{x} - b\right )}} - \frac {2 \, {\left (12 \, a^{3} b e^{\left (5 \, x\right )} - 6 \, a^{4} e^{\left (4 \, x\right )} + 9 \, a^{2} b^{2} e^{\left (4 \, x\right )} + 3 \, b^{4} e^{\left (4 \, x\right )} + 16 \, a^{3} b e^{\left (3 \, x\right )} - 8 \, a b^{3} e^{\left (3 \, x\right )} - 6 \, a^{4} e^{\left (2 \, x\right )} + 18 \, a^{2} b^{2} e^{\left (2 \, x\right )} + 12 \, a^{3} b e^{x} - 4 \, a^{4} + 9 \, a^{2} b^{2} + b^{4}\right )}}{3 \, {\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} {\left (e^{\left (2 \, x\right )} + 1\right )}^{3}} \]

[In]

integrate(tanh(x)^4/(a+b*sinh(x))^2,x, algorithm="giac")

[Out]

(a^5 - 4*a^3*b^2)*log(abs(2*b*e^x + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^x + 2*a + 2*sqrt(a^2 + b^2)))/((a^6 + 3
*a^4*b^2 + 3*a^2*b^4 + b^6)*sqrt(a^2 + b^2)) + 2*(a^5*e^x - a^4*b)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*(b*e^(
2*x) + 2*a*e^x - b)) - 2/3*(12*a^3*b*e^(5*x) - 6*a^4*e^(4*x) + 9*a^2*b^2*e^(4*x) + 3*b^4*e^(4*x) + 16*a^3*b*e^
(3*x) - 8*a*b^3*e^(3*x) - 6*a^4*e^(2*x) + 18*a^2*b^2*e^(2*x) + 12*a^3*b*e^x - 4*a^4 + 9*a^2*b^2 + b^4)/((a^6 +
 3*a^4*b^2 + 3*a^2*b^4 + b^6)*(e^(2*x) + 1)^3)

Mupad [B] (verification not implemented)

Time = 2.02 (sec) , antiderivative size = 543, normalized size of antiderivative = 2.42 \[ \int \frac {\tanh ^4(x)}{(a+b \sinh (x))^2} \, dx=\frac {\frac {8\,\left (a^2-b^2\right )}{3\,\left (a^4+2\,a^2\,b^2+b^4\right )}-\frac {16\,a\,b\,{\mathrm {e}}^x}{3\,\left (a^4+2\,a^2\,b^2+b^4\right )}}{3\,{\mathrm {e}}^{2\,x}+3\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^{6\,x}+1}-\frac {\frac {4\,\left (a^6+a^4\,b^2-a^2\,b^4-b^6\right )}{{\left (a^4+2\,a^2\,b^2+b^4\right )}^2}-\frac {16\,{\mathrm {e}}^x\,\left (a^5\,b+2\,a^3\,b^3+a\,b^5\right )}{3\,{\left (a^4+2\,a^2\,b^2+b^4\right )}^2}}{2\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{4\,x}+1}-\frac {\frac {2\,\left (a^6\,b^5+a^4\,b^7\right )}{b^3\,\left (a^2\,b+b^3\right )\,{\left (a^2+b^2\right )}^3}-\frac {2\,{\mathrm {e}}^x\,\left (a^7\,b^5+a^5\,b^7\right )}{b^4\,\left (a^2\,b+b^3\right )\,{\left (a^2+b^2\right )}^3}}{2\,a\,{\mathrm {e}}^x-b+b\,{\mathrm {e}}^{2\,x}}-\frac {\frac {2\,\left (-2\,a^6+a^4\,b^2+4\,a^2\,b^4+b^6\right )}{{\left (a^4+2\,a^2\,b^2+b^4\right )}^2}+\frac {8\,{\mathrm {e}}^x\,\left (a^5\,b+a^3\,b^3\right )}{{\left (a^4+2\,a^2\,b^2+b^4\right )}^2}}{{\mathrm {e}}^{2\,x}+1}-\frac {\ln \left (-\frac {2\,{\mathrm {e}}^x\,\left (a^5-4\,a^3\,b^2\right )}{b\,{\left (a^2+b^2\right )}^3}-\frac {2\,\left (a^5-4\,a^3\,b^2\right )\,\left (b-a\,{\mathrm {e}}^x\right )}{b\,{\left (a^2+b^2\right )}^{7/2}}\right )\,\left (a^5-4\,a^3\,b^2\right )}{{\left (a^2+b^2\right )}^{7/2}}+\frac {\ln \left (\frac {2\,\left (a^5-4\,a^3\,b^2\right )\,\left (b-a\,{\mathrm {e}}^x\right )}{b\,{\left (a^2+b^2\right )}^{7/2}}-\frac {2\,{\mathrm {e}}^x\,\left (a^5-4\,a^3\,b^2\right )}{b\,{\left (a^2+b^2\right )}^3}\right )\,\left (a^5-4\,a^3\,b^2\right )}{{\left (a^2+b^2\right )}^{7/2}} \]

[In]

int(tanh(x)^4/(a + b*sinh(x))^2,x)

[Out]

((8*(a^2 - b^2))/(3*(a^4 + b^4 + 2*a^2*b^2)) - (16*a*b*exp(x))/(3*(a^4 + b^4 + 2*a^2*b^2)))/(3*exp(2*x) + 3*ex
p(4*x) + exp(6*x) + 1) - ((4*(a^6 - b^6 - a^2*b^4 + a^4*b^2))/(a^4 + b^4 + 2*a^2*b^2)^2 - (16*exp(x)*(a*b^5 +
a^5*b + 2*a^3*b^3))/(3*(a^4 + b^4 + 2*a^2*b^2)^2))/(2*exp(2*x) + exp(4*x) + 1) - ((2*(a^4*b^7 + a^6*b^5))/(b^3
*(a^2*b + b^3)*(a^2 + b^2)^3) - (2*exp(x)*(a^5*b^7 + a^7*b^5))/(b^4*(a^2*b + b^3)*(a^2 + b^2)^3))/(2*a*exp(x)
- b + b*exp(2*x)) - ((2*(b^6 - 2*a^6 + 4*a^2*b^4 + a^4*b^2))/(a^4 + b^4 + 2*a^2*b^2)^2 + (8*exp(x)*(a^5*b + a^
3*b^3))/(a^4 + b^4 + 2*a^2*b^2)^2)/(exp(2*x) + 1) - (log(- (2*exp(x)*(a^5 - 4*a^3*b^2))/(b*(a^2 + b^2)^3) - (2
*(a^5 - 4*a^3*b^2)*(b - a*exp(x)))/(b*(a^2 + b^2)^(7/2)))*(a^5 - 4*a^3*b^2))/(a^2 + b^2)^(7/2) + (log((2*(a^5
- 4*a^3*b^2)*(b - a*exp(x)))/(b*(a^2 + b^2)^(7/2)) - (2*exp(x)*(a^5 - 4*a^3*b^2))/(b*(a^2 + b^2)^3))*(a^5 - 4*
a^3*b^2))/(a^2 + b^2)^(7/2)