\(\int \frac {\sinh (\frac {\sqrt {1-a x}}{\sqrt {1+a x}})}{1-a^2 x^2} \, dx\) [263]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 34, antiderivative size = 26 \[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=-\frac {\text {Shi}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a} \]

[Out]

-Shi((-a*x+1)^(1/2)/(a*x+1)^(1/2))/a

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {6813, 3379} \[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=-\frac {\text {Shi}\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )}{a} \]

[In]

Int[Sinh[Sqrt[1 - a*x]/Sqrt[1 + a*x]]/(1 - a^2*x^2),x]

[Out]

-(SinhIntegral[Sqrt[1 - a*x]/Sqrt[1 + a*x]]/a)

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 6813

Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_.)/((A_.) + (C_.)*(x_)^
2), x_Symbol] :> Dist[2*e*(g/(C*(e*f - d*g))), Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x
]], x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {\sinh (x)}{x} \, dx,x,\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a} \\ & = -\frac {\text {Shi}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00 \[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=-\frac {\text {Shi}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a} \]

[In]

Integrate[Sinh[Sqrt[1 - a*x]/Sqrt[1 + a*x]]/(1 - a^2*x^2),x]

[Out]

-(SinhIntegral[Sqrt[1 - a*x]/Sqrt[1 + a*x]]/a)

Maple [F]

\[\int \frac {\sinh \left (\frac {\sqrt {-a x +1}}{\sqrt {a x +1}}\right )}{-a^{2} x^{2}+1}d x\]

[In]

int(sinh((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x)

[Out]

int(sinh((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x)

Fricas [F]

\[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\int { -\frac {\sinh \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right )}{a^{2} x^{2} - 1} \,d x } \]

[In]

integrate(sinh((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x, algorithm="fricas")

[Out]

integral(-sinh(sqrt(-a*x + 1)/sqrt(a*x + 1))/(a^2*x^2 - 1), x)

Sympy [F]

\[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=- \int \frac {\sinh {\left (\frac {\sqrt {- a x + 1}}{\sqrt {a x + 1}} \right )}}{a^{2} x^{2} - 1}\, dx \]

[In]

integrate(sinh((-a*x+1)**(1/2)/(a*x+1)**(1/2))/(-a**2*x**2+1),x)

[Out]

-Integral(sinh(sqrt(-a*x + 1)/sqrt(a*x + 1))/(a**2*x**2 - 1), x)

Maxima [F]

\[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\int { -\frac {\sinh \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right )}{a^{2} x^{2} - 1} \,d x } \]

[In]

integrate(sinh((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x, algorithm="maxima")

[Out]

-integrate(sinh(sqrt(-a*x + 1)/sqrt(a*x + 1))/(a^2*x^2 - 1), x)

Giac [F]

\[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\int { -\frac {\sinh \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right )}{a^{2} x^{2} - 1} \,d x } \]

[In]

integrate(sinh((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x, algorithm="giac")

[Out]

integrate(-sinh(sqrt(-a*x + 1)/sqrt(a*x + 1))/(a^2*x^2 - 1), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=-\int \frac {\mathrm {sinh}\left (\frac {\sqrt {1-a\,x}}{\sqrt {a\,x+1}}\right )}{a^2\,x^2-1} \,d x \]

[In]

int(-sinh((1 - a*x)^(1/2)/(a*x + 1)^(1/2))/(a^2*x^2 - 1),x)

[Out]

-int(sinh((1 - a*x)^(1/2)/(a*x + 1)^(1/2))/(a^2*x^2 - 1), x)