\(\int \frac {\tanh ^5(a+b \log (c x^n))}{x} \, dx\) [188]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 66 \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {\log \left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )}{b n}-\frac {\tanh ^2\left (a+b \log \left (c x^n\right )\right )}{2 b n}-\frac {\tanh ^4\left (a+b \log \left (c x^n\right )\right )}{4 b n} \]

[Out]

ln(cosh(a+b*ln(c*x^n)))/b/n-1/2*tanh(a+b*ln(c*x^n))^2/b/n-1/4*tanh(a+b*ln(c*x^n))^4/b/n

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3554, 3556} \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {\tanh ^4\left (a+b \log \left (c x^n\right )\right )}{4 b n}-\frac {\tanh ^2\left (a+b \log \left (c x^n\right )\right )}{2 b n}+\frac {\log \left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )}{b n} \]

[In]

Int[Tanh[a + b*Log[c*x^n]]^5/x,x]

[Out]

Log[Cosh[a + b*Log[c*x^n]]]/(b*n) - Tanh[a + b*Log[c*x^n]]^2/(2*b*n) - Tanh[a + b*Log[c*x^n]]^4/(4*b*n)

Rule 3554

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \tanh ^5(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n} \\ & = -\frac {\tanh ^4\left (a+b \log \left (c x^n\right )\right )}{4 b n}+\frac {\text {Subst}\left (\int \tanh ^3(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n} \\ & = -\frac {\tanh ^2\left (a+b \log \left (c x^n\right )\right )}{2 b n}-\frac {\tanh ^4\left (a+b \log \left (c x^n\right )\right )}{4 b n}+\frac {\text {Subst}\left (\int \tanh (a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n} \\ & = \frac {\log \left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )}{b n}-\frac {\tanh ^2\left (a+b \log \left (c x^n\right )\right )}{2 b n}-\frac {\tanh ^4\left (a+b \log \left (c x^n\right )\right )}{4 b n} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.83 \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {4 \log \left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )-2 \tanh ^2\left (a+b \log \left (c x^n\right )\right )-\tanh ^4\left (a+b \log \left (c x^n\right )\right )}{4 b n} \]

[In]

Integrate[Tanh[a + b*Log[c*x^n]]^5/x,x]

[Out]

(4*Log[Cosh[a + b*Log[c*x^n]]] - 2*Tanh[a + b*Log[c*x^n]]^2 - Tanh[a + b*Log[c*x^n]]^4)/(4*b*n)

Maple [A] (verified)

Time = 0.65 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.94

method result size
parallelrisch \(-\frac {{\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{4}+4 \ln \left (x \right ) b n +2 {\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}+4 \ln \left (1-\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )\right )}{4 b n}\) \(62\)
derivativedivides \(\frac {-\frac {{\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{4}}{4}-\frac {{\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2}-\frac {\ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )-1\right )}{2}-\frac {\ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )+1\right )}{2}}{n b}\) \(71\)
default \(\frac {-\frac {{\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{4}}{4}-\frac {{\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2}-\frac {\ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )-1\right )}{2}-\frac {\ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )+1\right )}{2}}{n b}\) \(71\)
risch \(\ln \left (x \right )-\frac {2 a}{b n}-\frac {2 \ln \left (c \right )}{n}-\frac {2 \ln \left (x^{n}\right )}{n}-\frac {i \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{n}+\frac {i \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )}{n}+\frac {i \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{n}-\frac {i \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}{n}+\frac {4 \left (x^{n}\right )^{2 b} c^{2 b} \left ({\mathrm e}^{3 i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-3 i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-3 i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{3 i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )} {\mathrm e}^{6 a} \left (x^{n}\right )^{4 b} c^{4 b}+{\mathrm e}^{2 i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-2 i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-2 i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{2 i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )} {\mathrm e}^{4 a} \left (x^{n}\right )^{2 b} c^{2 b}+{\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )} {\mathrm e}^{2 a}\right )}{b n {\left (\left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}+1\right )}^{4}}+\frac {\ln \left (\left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}+1\right )}{b n}\) \(657\)

[In]

int(tanh(a+b*ln(c*x^n))^5/x,x,method=_RETURNVERBOSE)

[Out]

-1/4*(tanh(a+b*ln(c*x^n))^4+4*ln(x)*b*n+2*tanh(a+b*ln(c*x^n))^2+4*ln(1-tanh(a+b*ln(c*x^n))))/b/n

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1568 vs. \(2 (62) = 124\).

Time = 0.26 (sec) , antiderivative size = 1568, normalized size of antiderivative = 23.76 \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Too large to display} \]

[In]

integrate(tanh(a+b*log(c*x^n))^5/x,x, algorithm="fricas")

[Out]

-(b*n*cosh(b*n*log(x) + b*log(c) + a)^8*log(x) + 8*b*n*cosh(b*n*log(x) + b*log(c) + a)*log(x)*sinh(b*n*log(x)
+ b*log(c) + a)^7 + b*n*log(x)*sinh(b*n*log(x) + b*log(c) + a)^8 + 4*(b*n*log(x) - 1)*cosh(b*n*log(x) + b*log(
c) + a)^6 + 4*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^2*log(x) + b*n*log(x) - 1)*sinh(b*n*log(x) + b*log(c) + a
)^6 + 8*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^3*log(x) + 3*(b*n*log(x) - 1)*cosh(b*n*log(x) + b*log(c) + a))*
sinh(b*n*log(x) + b*log(c) + a)^5 + 2*(3*b*n*log(x) - 2)*cosh(b*n*log(x) + b*log(c) + a)^4 + 2*(35*b*n*cosh(b*
n*log(x) + b*log(c) + a)^4*log(x) + 30*(b*n*log(x) - 1)*cosh(b*n*log(x) + b*log(c) + a)^2 + 3*b*n*log(x) - 2)*
sinh(b*n*log(x) + b*log(c) + a)^4 + 8*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^5*log(x) + 10*(b*n*log(x) - 1)*co
sh(b*n*log(x) + b*log(c) + a)^3 + (3*b*n*log(x) - 2)*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(
c) + a)^3 + 4*(b*n*log(x) - 1)*cosh(b*n*log(x) + b*log(c) + a)^2 + b*n*log(x) + 4*(7*b*n*cosh(b*n*log(x) + b*l
og(c) + a)^6*log(x) + 15*(b*n*log(x) - 1)*cosh(b*n*log(x) + b*log(c) + a)^4 + 3*(3*b*n*log(x) - 2)*cosh(b*n*lo
g(x) + b*log(c) + a)^2 + b*n*log(x) - 1)*sinh(b*n*log(x) + b*log(c) + a)^2 - (cosh(b*n*log(x) + b*log(c) + a)^
8 + 8*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a)^7 + sinh(b*n*log(x) + b*log(c) + a)^8 +
4*(7*cosh(b*n*log(x) + b*log(c) + a)^2 + 1)*sinh(b*n*log(x) + b*log(c) + a)^6 + 4*cosh(b*n*log(x) + b*log(c) +
 a)^6 + 8*(7*cosh(b*n*log(x) + b*log(c) + a)^3 + 3*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c)
 + a)^5 + 2*(35*cosh(b*n*log(x) + b*log(c) + a)^4 + 30*cosh(b*n*log(x) + b*log(c) + a)^2 + 3)*sinh(b*n*log(x)
+ b*log(c) + a)^4 + 6*cosh(b*n*log(x) + b*log(c) + a)^4 + 8*(7*cosh(b*n*log(x) + b*log(c) + a)^5 + 10*cosh(b*n
*log(x) + b*log(c) + a)^3 + 3*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^3 + 4*(7*cosh(b
*n*log(x) + b*log(c) + a)^6 + 15*cosh(b*n*log(x) + b*log(c) + a)^4 + 9*cosh(b*n*log(x) + b*log(c) + a)^2 + 1)*
sinh(b*n*log(x) + b*log(c) + a)^2 + 4*cosh(b*n*log(x) + b*log(c) + a)^2 + 8*(cosh(b*n*log(x) + b*log(c) + a)^7
 + 3*cosh(b*n*log(x) + b*log(c) + a)^5 + 3*cosh(b*n*log(x) + b*log(c) + a)^3 + cosh(b*n*log(x) + b*log(c) + a)
)*sinh(b*n*log(x) + b*log(c) + a) + 1)*log(2*cosh(b*n*log(x) + b*log(c) + a)/(cosh(b*n*log(x) + b*log(c) + a)
- sinh(b*n*log(x) + b*log(c) + a))) + 8*(b*n*cosh(b*n*log(x) + b*log(c) + a)^7*log(x) + 3*(b*n*log(x) - 1)*cos
h(b*n*log(x) + b*log(c) + a)^5 + (3*b*n*log(x) - 2)*cosh(b*n*log(x) + b*log(c) + a)^3 + (b*n*log(x) - 1)*cosh(
b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a))/(b*n*cosh(b*n*log(x) + b*log(c) + a)^8 + 8*b*n*co
sh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a)^7 + b*n*sinh(b*n*log(x) + b*log(c) + a)^8 + 4*b*
n*cosh(b*n*log(x) + b*log(c) + a)^6 + 4*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^2 + b*n)*sinh(b*n*log(x) + b*lo
g(c) + a)^6 + 6*b*n*cosh(b*n*log(x) + b*log(c) + a)^4 + 8*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^3 + 3*b*n*cos
h(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^5 + 2*(35*b*n*cosh(b*n*log(x) + b*log(c) + a)^4
+ 30*b*n*cosh(b*n*log(x) + b*log(c) + a)^2 + 3*b*n)*sinh(b*n*log(x) + b*log(c) + a)^4 + 4*b*n*cosh(b*n*log(x)
+ b*log(c) + a)^2 + 8*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^5 + 10*b*n*cosh(b*n*log(x) + b*log(c) + a)^3 + 3*
b*n*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^3 + 4*(7*b*n*cosh(b*n*log(x) + b*log(c) +
 a)^6 + 15*b*n*cosh(b*n*log(x) + b*log(c) + a)^4 + 9*b*n*cosh(b*n*log(x) + b*log(c) + a)^2 + b*n)*sinh(b*n*log
(x) + b*log(c) + a)^2 + b*n + 8*(b*n*cosh(b*n*log(x) + b*log(c) + a)^7 + 3*b*n*cosh(b*n*log(x) + b*log(c) + a)
^5 + 3*b*n*cosh(b*n*log(x) + b*log(c) + a)^3 + b*n*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c)
 + a))

Sympy [A] (verification not implemented)

Time = 3.84 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.32 \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\begin {cases} \log {\left (x \right )} \tanh ^{5}{\left (a \right )} & \text {for}\: b = 0 \wedge \left (b = 0 \vee n = 0\right ) \\\log {\left (x \right )} \tanh ^{5}{\left (a + b \log {\left (c \right )} \right )} & \text {for}\: n = 0 \\\frac {\log {\left (c x^{n} \right )}}{n} - \frac {\log {\left (\tanh {\left (a + b \log {\left (c x^{n} \right )} \right )} + 1 \right )}}{b n} - \frac {\tanh ^{4}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{4 b n} - \frac {\tanh ^{2}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{2 b n} & \text {otherwise} \end {cases} \]

[In]

integrate(tanh(a+b*ln(c*x**n))**5/x,x)

[Out]

Piecewise((log(x)*tanh(a)**5, Eq(b, 0) & (Eq(b, 0) | Eq(n, 0))), (log(x)*tanh(a + b*log(c))**5, Eq(n, 0)), (lo
g(c*x**n)/n - log(tanh(a + b*log(c*x**n)) + 1)/(b*n) - tanh(a + b*log(c*x**n))**4/(4*b*n) - tanh(a + b*log(c*x
**n))**2/(2*b*n), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 829 vs. \(2 (62) = 124\).

Time = 0.33 (sec) , antiderivative size = 829, normalized size of antiderivative = 12.56 \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Too large to display} \]

[In]

integrate(tanh(a+b*log(c*x^n))^5/x,x, algorithm="maxima")

[Out]

1/24*(48*c^(6*b)*e^(6*b*log(x^n) + 6*a) + 108*c^(4*b)*e^(4*b*log(x^n) + 4*a) + 88*c^(2*b)*e^(2*b*log(x^n) + 2*
a) + 25)/(b*c^(8*b)*n*e^(8*b*log(x^n) + 8*a) + 4*b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 6*b*c^(4*b)*n*e^(4*b*log
(x^n) + 4*a) + 4*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) - 1/24*(12*c^(6*b)*e^(6*b*log(x^n) + 6*a) + 42*c^(4
*b)*e^(4*b*log(x^n) + 4*a) + 52*c^(2*b)*e^(2*b*log(x^n) + 2*a) + 25)/(b*c^(8*b)*n*e^(8*b*log(x^n) + 8*a) + 4*b
*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 6*b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) + 4*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a
) + b*n) + 5/8*(4*c^(6*b)*e^(6*b*log(x^n) + 6*a) + 6*c^(4*b)*e^(4*b*log(x^n) + 4*a) + 4*c^(2*b)*e^(2*b*log(x^n
) + 2*a) + 1)/(b*c^(8*b)*n*e^(8*b*log(x^n) + 8*a) + 4*b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 6*b*c^(4*b)*n*e^(4*
b*log(x^n) + 4*a) + 4*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) - 5/12*(6*c^(4*b)*e^(4*b*log(x^n) + 4*a) + 4*c
^(2*b)*e^(2*b*log(x^n) + 2*a) + 1)/(b*c^(8*b)*n*e^(8*b*log(x^n) + 8*a) + 4*b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a)
+ 6*b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) + 4*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) + 5/12*(4*c^(2*b)*e^(2*b*
log(x^n) + 2*a) + 1)/(b*c^(8*b)*n*e^(8*b*log(x^n) + 8*a) + 4*b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 6*b*c^(4*b)*
n*e^(4*b*log(x^n) + 4*a) + 4*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) - 5/8/(b*c^(8*b)*n*e^(8*b*log(x^n) + 8*
a) + 4*b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 6*b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) + 4*b*c^(2*b)*n*e^(2*b*log(x^
n) + 2*a) + b*n) + log((c^(2*b)*e^(2*b*log(x^n) + 2*a) + 1)*e^(-2*a)/c^(2*b))/(b*n) - log(x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 161 vs. \(2 (62) = 124\).

Time = 0.36 (sec) , antiderivative size = 161, normalized size of antiderivative = 2.44 \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {\log \left (\sqrt {2 \, x^{2 \, b n} {\left | c \right |}^{2 \, b} \cos \left (\pi b \mathrm {sgn}\left (c\right ) - \pi b\right ) e^{\left (2 \, a\right )} + x^{4 \, b n} {\left | c \right |}^{4 \, b} e^{\left (4 \, a\right )} + 1}\right )}{b n} - \frac {25 \, c^{8 \, b} x^{8 \, b n} e^{\left (8 \, a\right )} + 52 \, c^{6 \, b} x^{6 \, b n} e^{\left (6 \, a\right )} + 102 \, c^{4 \, b} x^{4 \, b n} e^{\left (4 \, a\right )} + 52 \, c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} + 25}{12 \, {\left (c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} + 1\right )}^{4} b n} - \log \left (x\right ) \]

[In]

integrate(tanh(a+b*log(c*x^n))^5/x,x, algorithm="giac")

[Out]

log(sqrt(2*x^(2*b*n)*abs(c)^(2*b)*cos(pi*b*sgn(c) - pi*b)*e^(2*a) + x^(4*b*n)*abs(c)^(4*b)*e^(4*a) + 1))/(b*n)
 - 1/12*(25*c^(8*b)*x^(8*b*n)*e^(8*a) + 52*c^(6*b)*x^(6*b*n)*e^(6*a) + 102*c^(4*b)*x^(4*b*n)*e^(4*a) + 52*c^(2
*b)*x^(2*b*n)*e^(2*a) + 25)/((c^(2*b)*x^(2*b*n)*e^(2*a) + 1)^4*b*n) - log(x)

Mupad [B] (verification not implemented)

Time = 1.72 (sec) , antiderivative size = 227, normalized size of antiderivative = 3.44 \[ \int \frac {\tanh ^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {8}{b\,n+3\,b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+3\,b\,n\,{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}+b\,n\,{\mathrm {e}}^{6\,a}\,{\left (c\,x^n\right )}^{6\,b}}-\ln \left (x\right )+\frac {4}{b\,n+b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}}-\frac {4}{b\,n+4\,b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+6\,b\,n\,{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}+4\,b\,n\,{\mathrm {e}}^{6\,a}\,{\left (c\,x^n\right )}^{6\,b}+b\,n\,{\mathrm {e}}^{8\,a}\,{\left (c\,x^n\right )}^{8\,b}}-\frac {8}{b\,n+2\,b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+b\,n\,{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}}+\frac {\ln \left ({\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+1\right )}{b\,n} \]

[In]

int(tanh(a + b*log(c*x^n))^5/x,x)

[Out]

8/(b*n + 3*b*n*exp(2*a)*(c*x^n)^(2*b) + 3*b*n*exp(4*a)*(c*x^n)^(4*b) + b*n*exp(6*a)*(c*x^n)^(6*b)) - log(x) +
4/(b*n + b*n*exp(2*a)*(c*x^n)^(2*b)) - 4/(b*n + 4*b*n*exp(2*a)*(c*x^n)^(2*b) + 6*b*n*exp(4*a)*(c*x^n)^(4*b) +
4*b*n*exp(6*a)*(c*x^n)^(6*b) + b*n*exp(8*a)*(c*x^n)^(8*b)) - 8/(b*n + 2*b*n*exp(2*a)*(c*x^n)^(2*b) + b*n*exp(4
*a)*(c*x^n)^(4*b)) + log(exp(2*a)*(c*x^n)^(2*b) + 1)/(b*n)