\(\int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx\) [234]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 311 \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=\frac {e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c}-\frac {4 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c \left (1+e^{2 c (a+b x)}\right )^4}+\frac {26 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{3 b c \left (1+e^{2 c (a+b x)}\right )^3}-\frac {55 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{6 b c \left (1+e^{2 c (a+b x)}\right )^2}+\frac {25 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{4 b c \left (1+e^{2 c (a+b x)}\right )}-\frac {15 \arctan \left (e^{c (a+b x)}\right ) \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{4 b c} \]

[Out]

exp(c*(b*x+a))*coth(b*c*x+a*c)*(tanh(b*c*x+a*c)^2)^(1/2)/b/c-4*exp(c*(b*x+a))*coth(b*c*x+a*c)*(tanh(b*c*x+a*c)
^2)^(1/2)/b/c/(1+exp(2*c*(b*x+a)))^4+26/3*exp(c*(b*x+a))*coth(b*c*x+a*c)*(tanh(b*c*x+a*c)^2)^(1/2)/b/c/(1+exp(
2*c*(b*x+a)))^3-55/6*exp(c*(b*x+a))*coth(b*c*x+a*c)*(tanh(b*c*x+a*c)^2)^(1/2)/b/c/(1+exp(2*c*(b*x+a)))^2+25/4*
exp(c*(b*x+a))*coth(b*c*x+a*c)*(tanh(b*c*x+a*c)^2)^(1/2)/b/c/(1+exp(2*c*(b*x+a)))-15/4*arctan(exp(c*(b*x+a)))*
coth(b*c*x+a*c)*(tanh(b*c*x+a*c)^2)^(1/2)/b/c

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {6852, 2320, 398, 1828, 1171, 393, 209} \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=-\frac {15 \arctan \left (e^{c (a+b x)}\right ) \sqrt {\tanh ^2(a c+b c x)} \coth (a c+b c x)}{4 b c}+\frac {e^{c (a+b x)} \sqrt {\tanh ^2(a c+b c x)} \coth (a c+b c x)}{b c}+\frac {25 e^{c (a+b x)} \sqrt {\tanh ^2(a c+b c x)} \coth (a c+b c x)}{4 b c \left (e^{2 c (a+b x)}+1\right )}-\frac {55 e^{c (a+b x)} \sqrt {\tanh ^2(a c+b c x)} \coth (a c+b c x)}{6 b c \left (e^{2 c (a+b x)}+1\right )^2}+\frac {26 e^{c (a+b x)} \sqrt {\tanh ^2(a c+b c x)} \coth (a c+b c x)}{3 b c \left (e^{2 c (a+b x)}+1\right )^3}-\frac {4 e^{c (a+b x)} \sqrt {\tanh ^2(a c+b c x)} \coth (a c+b c x)}{b c \left (e^{2 c (a+b x)}+1\right )^4} \]

[In]

Int[E^(c*(a + b*x))*(Tanh[a*c + b*c*x]^2)^(5/2),x]

[Out]

(E^(c*(a + b*x))*Coth[a*c + b*c*x]*Sqrt[Tanh[a*c + b*c*x]^2])/(b*c) - (4*E^(c*(a + b*x))*Coth[a*c + b*c*x]*Sqr
t[Tanh[a*c + b*c*x]^2])/(b*c*(1 + E^(2*c*(a + b*x)))^4) + (26*E^(c*(a + b*x))*Coth[a*c + b*c*x]*Sqrt[Tanh[a*c
+ b*c*x]^2])/(3*b*c*(1 + E^(2*c*(a + b*x)))^3) - (55*E^(c*(a + b*x))*Coth[a*c + b*c*x]*Sqrt[Tanh[a*c + b*c*x]^
2])/(6*b*c*(1 + E^(2*c*(a + b*x)))^2) + (25*E^(c*(a + b*x))*Coth[a*c + b*c*x]*Sqrt[Tanh[a*c + b*c*x]^2])/(4*b*
c*(1 + E^(2*c*(a + b*x)))) - (15*ArcTan[E^(c*(a + b*x))]*Coth[a*c + b*c*x]*Sqrt[Tanh[a*c + b*c*x]^2])/(4*b*c)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 398

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^n)
^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILt
Q[q, 0] && GeQ[p, -q]

Rule 1171

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQ
uotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2,
x], x, 0]}, Simp[(-R)*x*((d + e*x^2)^(q + 1)/(2*d*(q + 1))), x] + Dist[1/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1
)*ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &&
 NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]

Rule 1828

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*
g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6852

Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a*v^m)^FracPart[p]/v^(m*FracPart[p])), Int
[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !(EqQ[a, 1] && EqQ[m, 1]) &&
!(EqQ[v, x] && EqQ[m, 1])

Rubi steps \begin{align*} \text {integral}& = \left (\coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \int e^{c (a+b x)} \tanh ^5(a c+b c x) \, dx \\ & = \frac {\left (\coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \text {Subst}\left (\int \frac {\left (-1+x^2\right )^5}{\left (1+x^2\right )^5} \, dx,x,e^{c (a+b x)}\right )}{b c} \\ & = \frac {\left (\coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \text {Subst}\left (\int \left (1-\frac {2 \left (1+10 x^4+5 x^8\right )}{\left (1+x^2\right )^5}\right ) \, dx,x,e^{c (a+b x)}\right )}{b c} \\ & = \frac {e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c}-\frac {\left (2 \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \text {Subst}\left (\int \frac {1+10 x^4+5 x^8}{\left (1+x^2\right )^5} \, dx,x,e^{c (a+b x)}\right )}{b c} \\ & = \frac {e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c}-\frac {4 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c \left (1+e^{2 c (a+b x)}\right )^4}+\frac {\left (\coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \text {Subst}\left (\int \frac {8-120 x^2+40 x^4-40 x^6}{\left (1+x^2\right )^4} \, dx,x,e^{c (a+b x)}\right )}{4 b c} \\ & = \frac {e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c}-\frac {4 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c \left (1+e^{2 c (a+b x)}\right )^4}+\frac {26 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{3 b c \left (1+e^{2 c (a+b x)}\right )^3}-\frac {\left (\coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \text {Subst}\left (\int \frac {160-480 x^2+240 x^4}{\left (1+x^2\right )^3} \, dx,x,e^{c (a+b x)}\right )}{24 b c} \\ & = \frac {e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c}-\frac {4 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c \left (1+e^{2 c (a+b x)}\right )^4}+\frac {26 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{3 b c \left (1+e^{2 c (a+b x)}\right )^3}-\frac {55 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{6 b c \left (1+e^{2 c (a+b x)}\right )^2}+\frac {\left (\coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \text {Subst}\left (\int \frac {240-960 x^2}{\left (1+x^2\right )^2} \, dx,x,e^{c (a+b x)}\right )}{96 b c} \\ & = \frac {e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c}-\frac {4 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c \left (1+e^{2 c (a+b x)}\right )^4}+\frac {26 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{3 b c \left (1+e^{2 c (a+b x)}\right )^3}-\frac {55 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{6 b c \left (1+e^{2 c (a+b x)}\right )^2}+\frac {25 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{4 b c \left (1+e^{2 c (a+b x)}\right )}-\frac {\left (15 \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}\right ) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,e^{c (a+b x)}\right )}{4 b c} \\ & = \frac {e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c}-\frac {4 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{b c \left (1+e^{2 c (a+b x)}\right )^4}+\frac {26 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{3 b c \left (1+e^{2 c (a+b x)}\right )^3}-\frac {55 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{6 b c \left (1+e^{2 c (a+b x)}\right )^2}+\frac {25 e^{c (a+b x)} \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{4 b c \left (1+e^{2 c (a+b x)}\right )}-\frac {15 \arctan \left (e^{c (a+b x)}\right ) \coth (a c+b c x) \sqrt {\tanh ^2(a c+b c x)}}{4 b c} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.43 \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=\frac {\left (e^{c (a+b x)} \left (33+157 e^{2 c (a+b x)}+187 e^{4 c (a+b x)}+123 e^{6 c (a+b x)}+12 e^{8 c (a+b x)}\right )-45 \left (1+e^{2 c (a+b x)}\right )^4 \arctan \left (e^{c (a+b x)}\right )\right ) \coth (c (a+b x)) \sqrt {\tanh ^2(c (a+b x))}}{12 b c \left (1+e^{2 c (a+b x)}\right )^4} \]

[In]

Integrate[E^(c*(a + b*x))*(Tanh[a*c + b*c*x]^2)^(5/2),x]

[Out]

((E^(c*(a + b*x))*(33 + 157*E^(2*c*(a + b*x)) + 187*E^(4*c*(a + b*x)) + 123*E^(6*c*(a + b*x)) + 12*E^(8*c*(a +
 b*x))) - 45*(1 + E^(2*c*(a + b*x)))^4*ArcTan[E^(c*(a + b*x))])*Coth[c*(a + b*x)]*Sqrt[Tanh[c*(a + b*x)]^2])/(
12*b*c*(1 + E^(2*c*(a + b*x)))^4)

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.60 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.63

method result size
default \(\frac {\operatorname {csgn}\left (\tanh \left (c \left (b x +a \right )\right )\right ) \left (\frac {\sinh \left (b c x +a c \right )^{4}}{\cosh \left (b c x +a c \right )^{3}}+\frac {4 \sinh \left (b c x +a c \right )^{2}}{\cosh \left (b c x +a c \right )^{3}}+\frac {8}{3 \cosh \left (b c x +a c \right )^{3}}+\frac {\sinh \left (b c x +a c \right )^{5}}{\cosh \left (b c x +a c \right )^{4}}+\frac {5 \sinh \left (b c x +a c \right )^{3}}{\cosh \left (b c x +a c \right )^{4}}+\frac {5 \sinh \left (b c x +a c \right )}{\cosh \left (b c x +a c \right )^{4}}-5 \left (\frac {\operatorname {sech}\left (b c x +a c \right )^{3}}{4}+\frac {3 \,\operatorname {sech}\left (b c x +a c \right )}{8}\right ) \tanh \left (b c x +a c \right )-\frac {15 \arctan \left ({\mathrm e}^{b c x +a c}\right )}{4}\right )}{c b}\) \(195\)
risch \(\frac {\left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right ) \sqrt {\frac {\left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right )^{2}}{\left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right )^{2}}}\, {\mathrm e}^{c \left (b x +a \right )}}{\left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right ) b c}+\frac {\sqrt {\frac {\left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right )^{2}}{\left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right )^{2}}}\, {\mathrm e}^{c \left (b x +a \right )} \left (75 \,{\mathrm e}^{6 c \left (b x +a \right )}+115 \,{\mathrm e}^{4 c \left (b x +a \right )}+109 \,{\mathrm e}^{2 c \left (b x +a \right )}+21\right )}{12 \left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right ) \left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right )^{3} c b}+\frac {15 i \left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right ) \sqrt {\frac {\left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right )^{2}}{\left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right )^{2}}}\, \ln \left ({\mathrm e}^{c \left (b x +a \right )}-i\right )}{8 \left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right ) c b}-\frac {15 i \left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right ) \sqrt {\frac {\left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right )^{2}}{\left (1+{\mathrm e}^{2 c \left (b x +a \right )}\right )^{2}}}\, \ln \left ({\mathrm e}^{c \left (b x +a \right )}+i\right )}{8 \left ({\mathrm e}^{2 c \left (b x +a \right )}-1\right ) c b}\) \(324\)

[In]

int(exp(c*(b*x+a))*(tanh(b*c*x+a*c)^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

csgn(tanh(c*(b*x+a)))/c/b*(sinh(b*c*x+a*c)^4/cosh(b*c*x+a*c)^3+4*sinh(b*c*x+a*c)^2/cosh(b*c*x+a*c)^3+8/3/cosh(
b*c*x+a*c)^3+sinh(b*c*x+a*c)^5/cosh(b*c*x+a*c)^4+5*sinh(b*c*x+a*c)^3/cosh(b*c*x+a*c)^4+5*sinh(b*c*x+a*c)/cosh(
b*c*x+a*c)^4-5*(1/4*sech(b*c*x+a*c)^3+3/8*sech(b*c*x+a*c))*tanh(b*c*x+a*c)-15/4*arctan(exp(b*c*x+a*c)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1226 vs. \(2 (281) = 562\).

Time = 0.26 (sec) , antiderivative size = 1226, normalized size of antiderivative = 3.94 \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=\text {Too large to display} \]

[In]

integrate(exp(c*(b*x+a))*(tanh(b*c*x+a*c)^2)^(5/2),x, algorithm="fricas")

[Out]

1/12*(12*cosh(b*c*x + a*c)^9 + 108*cosh(b*c*x + a*c)*sinh(b*c*x + a*c)^8 + 12*sinh(b*c*x + a*c)^9 + 3*(144*cos
h(b*c*x + a*c)^2 + 41)*sinh(b*c*x + a*c)^7 + 123*cosh(b*c*x + a*c)^7 + 21*(48*cosh(b*c*x + a*c)^3 + 41*cosh(b*
c*x + a*c))*sinh(b*c*x + a*c)^6 + (1512*cosh(b*c*x + a*c)^4 + 2583*cosh(b*c*x + a*c)^2 + 187)*sinh(b*c*x + a*c
)^5 + 187*cosh(b*c*x + a*c)^5 + (1512*cosh(b*c*x + a*c)^5 + 4305*cosh(b*c*x + a*c)^3 + 935*cosh(b*c*x + a*c))*
sinh(b*c*x + a*c)^4 + (1008*cosh(b*c*x + a*c)^6 + 4305*cosh(b*c*x + a*c)^4 + 1870*cosh(b*c*x + a*c)^2 + 157)*s
inh(b*c*x + a*c)^3 + 157*cosh(b*c*x + a*c)^3 + (432*cosh(b*c*x + a*c)^7 + 2583*cosh(b*c*x + a*c)^5 + 1870*cosh
(b*c*x + a*c)^3 + 471*cosh(b*c*x + a*c))*sinh(b*c*x + a*c)^2 - 45*(cosh(b*c*x + a*c)^8 + 8*cosh(b*c*x + a*c)*s
inh(b*c*x + a*c)^7 + sinh(b*c*x + a*c)^8 + 4*(7*cosh(b*c*x + a*c)^2 + 1)*sinh(b*c*x + a*c)^6 + 4*cosh(b*c*x +
a*c)^6 + 8*(7*cosh(b*c*x + a*c)^3 + 3*cosh(b*c*x + a*c))*sinh(b*c*x + a*c)^5 + 2*(35*cosh(b*c*x + a*c)^4 + 30*
cosh(b*c*x + a*c)^2 + 3)*sinh(b*c*x + a*c)^4 + 6*cosh(b*c*x + a*c)^4 + 8*(7*cosh(b*c*x + a*c)^5 + 10*cosh(b*c*
x + a*c)^3 + 3*cosh(b*c*x + a*c))*sinh(b*c*x + a*c)^3 + 4*(7*cosh(b*c*x + a*c)^6 + 15*cosh(b*c*x + a*c)^4 + 9*
cosh(b*c*x + a*c)^2 + 1)*sinh(b*c*x + a*c)^2 + 4*cosh(b*c*x + a*c)^2 + 8*(cosh(b*c*x + a*c)^7 + 3*cosh(b*c*x +
 a*c)^5 + 3*cosh(b*c*x + a*c)^3 + cosh(b*c*x + a*c))*sinh(b*c*x + a*c) + 1)*arctan(cosh(b*c*x + a*c) + sinh(b*
c*x + a*c)) + (108*cosh(b*c*x + a*c)^8 + 861*cosh(b*c*x + a*c)^6 + 935*cosh(b*c*x + a*c)^4 + 471*cosh(b*c*x +
a*c)^2 + 33)*sinh(b*c*x + a*c) + 33*cosh(b*c*x + a*c))/(b*c*cosh(b*c*x + a*c)^8 + 8*b*c*cosh(b*c*x + a*c)*sinh
(b*c*x + a*c)^7 + b*c*sinh(b*c*x + a*c)^8 + 4*b*c*cosh(b*c*x + a*c)^6 + 4*(7*b*c*cosh(b*c*x + a*c)^2 + b*c)*si
nh(b*c*x + a*c)^6 + 6*b*c*cosh(b*c*x + a*c)^4 + 8*(7*b*c*cosh(b*c*x + a*c)^3 + 3*b*c*cosh(b*c*x + a*c))*sinh(b
*c*x + a*c)^5 + 2*(35*b*c*cosh(b*c*x + a*c)^4 + 30*b*c*cosh(b*c*x + a*c)^2 + 3*b*c)*sinh(b*c*x + a*c)^4 + 4*b*
c*cosh(b*c*x + a*c)^2 + 8*(7*b*c*cosh(b*c*x + a*c)^5 + 10*b*c*cosh(b*c*x + a*c)^3 + 3*b*c*cosh(b*c*x + a*c))*s
inh(b*c*x + a*c)^3 + 4*(7*b*c*cosh(b*c*x + a*c)^6 + 15*b*c*cosh(b*c*x + a*c)^4 + 9*b*c*cosh(b*c*x + a*c)^2 + b
*c)*sinh(b*c*x + a*c)^2 + b*c + 8*(b*c*cosh(b*c*x + a*c)^7 + 3*b*c*cosh(b*c*x + a*c)^5 + 3*b*c*cosh(b*c*x + a*
c)^3 + b*c*cosh(b*c*x + a*c))*sinh(b*c*x + a*c))

Sympy [F(-1)]

Timed out. \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(exp(c*(b*x+a))*(tanh(b*c*x+a*c)**2)**(5/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.47 \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=-\frac {15 \, \arctan \left (e^{\left (b c x + a c\right )}\right )}{4 \, b c} + \frac {12 \, e^{\left (9 \, b c x + 9 \, a c\right )} + 123 \, e^{\left (7 \, b c x + 7 \, a c\right )} + 187 \, e^{\left (5 \, b c x + 5 \, a c\right )} + 157 \, e^{\left (3 \, b c x + 3 \, a c\right )} + 33 \, e^{\left (b c x + a c\right )}}{12 \, b c {\left (e^{\left (8 \, b c x + 8 \, a c\right )} + 4 \, e^{\left (6 \, b c x + 6 \, a c\right )} + 6 \, e^{\left (4 \, b c x + 4 \, a c\right )} + 4 \, e^{\left (2 \, b c x + 2 \, a c\right )} + 1\right )}} \]

[In]

integrate(exp(c*(b*x+a))*(tanh(b*c*x+a*c)^2)^(5/2),x, algorithm="maxima")

[Out]

-15/4*arctan(e^(b*c*x + a*c))/(b*c) + 1/12*(12*e^(9*b*c*x + 9*a*c) + 123*e^(7*b*c*x + 7*a*c) + 187*e^(5*b*c*x
+ 5*a*c) + 157*e^(3*b*c*x + 3*a*c) + 33*e^(b*c*x + a*c))/(b*c*(e^(8*b*c*x + 8*a*c) + 4*e^(6*b*c*x + 6*a*c) + 6
*e^(4*b*c*x + 4*a*c) + 4*e^(2*b*c*x + 2*a*c) + 1))

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 184, normalized size of antiderivative = 0.59 \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=-\frac {45 \, \arctan \left (e^{\left (b c x + a c\right )}\right ) \mathrm {sgn}\left (e^{\left (2 \, b c x + 2 \, a c\right )} - 1\right ) - 12 \, e^{\left (b c x + a c\right )} \mathrm {sgn}\left (e^{\left (2 \, b c x + 2 \, a c\right )} - 1\right ) - \frac {75 \, e^{\left (7 \, b c x + 7 \, a c\right )} \mathrm {sgn}\left (e^{\left (2 \, b c x + 2 \, a c\right )} - 1\right ) + 115 \, e^{\left (5 \, b c x + 5 \, a c\right )} \mathrm {sgn}\left (e^{\left (2 \, b c x + 2 \, a c\right )} - 1\right ) + 109 \, e^{\left (3 \, b c x + 3 \, a c\right )} \mathrm {sgn}\left (e^{\left (2 \, b c x + 2 \, a c\right )} - 1\right ) + 21 \, e^{\left (b c x + a c\right )} \mathrm {sgn}\left (e^{\left (2 \, b c x + 2 \, a c\right )} - 1\right )}{{\left (e^{\left (2 \, b c x + 2 \, a c\right )} + 1\right )}^{4}}}{12 \, b c} \]

[In]

integrate(exp(c*(b*x+a))*(tanh(b*c*x+a*c)^2)^(5/2),x, algorithm="giac")

[Out]

-1/12*(45*arctan(e^(b*c*x + a*c))*sgn(e^(2*b*c*x + 2*a*c) - 1) - 12*e^(b*c*x + a*c)*sgn(e^(2*b*c*x + 2*a*c) -
1) - (75*e^(7*b*c*x + 7*a*c)*sgn(e^(2*b*c*x + 2*a*c) - 1) + 115*e^(5*b*c*x + 5*a*c)*sgn(e^(2*b*c*x + 2*a*c) -
1) + 109*e^(3*b*c*x + 3*a*c)*sgn(e^(2*b*c*x + 2*a*c) - 1) + 21*e^(b*c*x + a*c)*sgn(e^(2*b*c*x + 2*a*c) - 1))/(
e^(2*b*c*x + 2*a*c) + 1)^4)/(b*c)

Mupad [F(-1)]

Timed out. \[ \int e^{c (a+b x)} \tanh ^2(a c+b c x)^{5/2} \, dx=\int {\mathrm {e}}^{c\,\left (a+b\,x\right )}\,{\left ({\mathrm {tanh}\left (a\,c+b\,c\,x\right )}^2\right )}^{5/2} \,d x \]

[In]

int(exp(c*(a + b*x))*(tanh(a*c + b*c*x)^2)^(5/2),x)

[Out]

int(exp(c*(a + b*x))*(tanh(a*c + b*c*x)^2)^(5/2), x)