\(\int \frac {1}{x \sqrt {\coth (a+b \log (c x^n))}} \, dx\) [202]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 47 \[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=\frac {\arctan \left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}+\frac {\text {arctanh}\left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \]

[Out]

arctan(coth(a+b*ln(c*x^n))^(1/2))/b/n+arctanh(coth(a+b*ln(c*x^n))^(1/2))/b/n

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3557, 335, 218, 212, 209} \[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=\frac {\arctan \left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}+\frac {\text {arctanh}\left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \]

[In]

Int[1/(x*Sqrt[Coth[a + b*Log[c*x^n]]]),x]

[Out]

ArcTan[Sqrt[Coth[a + b*Log[c*x^n]]]]/(b*n) + ArcTanh[Sqrt[Coth[a + b*Log[c*x^n]]]]/(b*n)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{\sqrt {\coth (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{n} \\ & = -\frac {\text {Subst}\left (\int \frac {1}{\sqrt {x} \left (-1+x^2\right )} \, dx,x,\coth \left (a+b \log \left (c x^n\right )\right )\right )}{b n} \\ & = -\frac {2 \text {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \\ & = \frac {\text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}+\frac {\text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \\ & = \frac {\arctan \left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}+\frac {\text {arctanh}\left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=\frac {\arctan \left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}+\frac {\text {arctanh}\left (\sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \]

[In]

Integrate[1/(x*Sqrt[Coth[a + b*Log[c*x^n]]]),x]

[Out]

ArcTan[Sqrt[Coth[a + b*Log[c*x^n]]]]/(b*n) + ArcTanh[Sqrt[Coth[a + b*Log[c*x^n]]]]/(b*n)

Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.79

method result size
derivativedivides \(\frac {\operatorname {arctanh}\left (\sqrt {\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+\arctan \left (\sqrt {\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )}{n b}\) \(37\)
default \(\frac {\operatorname {arctanh}\left (\sqrt {\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+\arctan \left (\sqrt {\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )}{n b}\) \(37\)

[In]

int(1/x/coth(a+b*ln(c*x^n))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/n/b*(arctanh(coth(a+b*ln(c*x^n))^(1/2))+arctan(coth(a+b*ln(c*x^n))^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 303 vs. \(2 (43) = 86\).

Time = 0.28 (sec) , antiderivative size = 303, normalized size of antiderivative = 6.45 \[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=-\frac {2 \, \arctan \left (-\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 1\right )} \sqrt {\frac {\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{\sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}}\right ) + \log \left (-\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 1\right )} \sqrt {\frac {\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{\sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}}\right )}{2 \, b n} \]

[In]

integrate(1/x/coth(a+b*log(c*x^n))^(1/2),x, algorithm="fricas")

[Out]

-1/2*(2*arctan(-cosh(b*n*log(x) + b*log(c) + a)^2 - 2*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(
c) + a) - sinh(b*n*log(x) + b*log(c) + a)^2 + (cosh(b*n*log(x) + b*log(c) + a)^2 + 2*cosh(b*n*log(x) + b*log(c
) + a)*sinh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)^2 - 1)*sqrt(cosh(b*n*log(x) + b*log(c
) + a)/sinh(b*n*log(x) + b*log(c) + a))) + log(-cosh(b*n*log(x) + b*log(c) + a)^2 - 2*cosh(b*n*log(x) + b*log(
c) + a)*sinh(b*n*log(x) + b*log(c) + a) - sinh(b*n*log(x) + b*log(c) + a)^2 + (cosh(b*n*log(x) + b*log(c) + a)
^2 + 2*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)^2 - 1
)*sqrt(cosh(b*n*log(x) + b*log(c) + a)/sinh(b*n*log(x) + b*log(c) + a))))/(b*n)

Sympy [F]

\[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=\int \frac {1}{x \sqrt {\coth {\left (a + b \log {\left (c x^{n} \right )} \right )}}}\, dx \]

[In]

integrate(1/x/coth(a+b*ln(c*x**n))**(1/2),x)

[Out]

Integral(1/(x*sqrt(coth(a + b*log(c*x**n)))), x)

Maxima [F]

\[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=\int { \frac {1}{x \sqrt {\coth \left (b \log \left (c x^{n}\right ) + a\right )}} \,d x } \]

[In]

integrate(1/x/coth(a+b*log(c*x^n))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(x*sqrt(coth(b*log(c*x^n) + a))), x)

Giac [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=\text {Timed out} \]

[In]

integrate(1/x/coth(a+b*log(c*x^n))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 2.33 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.77 \[ \int \frac {1}{x \sqrt {\coth \left (a+b \log \left (c x^n\right )\right )}} \, dx=\frac {\mathrm {atan}\left (\sqrt {\mathrm {coth}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )+\mathrm {atanh}\left (\sqrt {\mathrm {coth}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}{b\,n} \]

[In]

int(1/(x*coth(a + b*log(c*x^n))^(1/2)),x)

[Out]

(atan(coth(a + b*log(c*x^n))^(1/2)) + atanh(coth(a + b*log(c*x^n))^(1/2)))/(b*n)