\(\int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx\) [8]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 12, antiderivative size = 100 \[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{7/2} d}+\frac {\text {arctanh}\left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{7/2} d}-\frac {2}{5 b d (b \coth (c+d x))^{5/2}}-\frac {2}{b^3 d \sqrt {b \coth (c+d x)}} \]

[Out]

-arctan((b*coth(d*x+c))^(1/2)/b^(1/2))/b^(7/2)/d+arctanh((b*coth(d*x+c))^(1/2)/b^(1/2))/b^(7/2)/d-2/5/b/d/(b*c
oth(d*x+c))^(5/2)-2/b^3/d/(b*coth(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3555, 3557, 335, 304, 209, 212} \[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{7/2} d}+\frac {\text {arctanh}\left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{7/2} d}-\frac {2}{b^3 d \sqrt {b \coth (c+d x)}}-\frac {2}{5 b d (b \coth (c+d x))^{5/2}} \]

[In]

Int[(b*Coth[c + d*x])^(-7/2),x]

[Out]

-(ArcTan[Sqrt[b*Coth[c + d*x]]/Sqrt[b]]/(b^(7/2)*d)) + ArcTanh[Sqrt[b*Coth[c + d*x]]/Sqrt[b]]/(b^(7/2)*d) - 2/
(5*b*d*(b*Coth[c + d*x])^(5/2)) - 2/(b^3*d*Sqrt[b*Coth[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 3555

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = -\frac {2}{5 b d (b \coth (c+d x))^{5/2}}+\frac {\int \frac {1}{(b \coth (c+d x))^{3/2}} \, dx}{b^2} \\ & = -\frac {2}{5 b d (b \coth (c+d x))^{5/2}}-\frac {2}{b^3 d \sqrt {b \coth (c+d x)}}+\frac {\int \sqrt {b \coth (c+d x)} \, dx}{b^4} \\ & = -\frac {2}{5 b d (b \coth (c+d x))^{5/2}}-\frac {2}{b^3 d \sqrt {b \coth (c+d x)}}-\frac {\text {Subst}\left (\int \frac {\sqrt {x}}{-b^2+x^2} \, dx,x,b \coth (c+d x)\right )}{b^3 d} \\ & = -\frac {2}{5 b d (b \coth (c+d x))^{5/2}}-\frac {2}{b^3 d \sqrt {b \coth (c+d x)}}-\frac {2 \text {Subst}\left (\int \frac {x^2}{-b^2+x^4} \, dx,x,\sqrt {b \coth (c+d x)}\right )}{b^3 d} \\ & = -\frac {2}{5 b d (b \coth (c+d x))^{5/2}}-\frac {2}{b^3 d \sqrt {b \coth (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{b-x^2} \, dx,x,\sqrt {b \coth (c+d x)}\right )}{b^3 d}-\frac {\text {Subst}\left (\int \frac {1}{b+x^2} \, dx,x,\sqrt {b \coth (c+d x)}\right )}{b^3 d} \\ & = -\frac {\arctan \left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{7/2} d}+\frac {\text {arctanh}\left (\frac {\sqrt {b \coth (c+d x)}}{\sqrt {b}}\right )}{b^{7/2} d}-\frac {2}{5 b d (b \coth (c+d x))^{5/2}}-\frac {2}{b^3 d \sqrt {b \coth (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.90 \[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=\frac {5 \text {arctanh}\left (\sqrt [4]{\coth ^2(c+d x)}\right ) \sqrt [4]{\coth ^2(c+d x)}-5 \left (2+\arctan \left (\sqrt [4]{\coth ^2(c+d x)}\right ) \sqrt [4]{\coth ^2(c+d x)}\right )-2 \tanh ^2(c+d x)}{5 b^3 d \sqrt {b \coth (c+d x)}} \]

[In]

Integrate[(b*Coth[c + d*x])^(-7/2),x]

[Out]

(5*ArcTanh[(Coth[c + d*x]^2)^(1/4)]*(Coth[c + d*x]^2)^(1/4) - 5*(2 + ArcTan[(Coth[c + d*x]^2)^(1/4)]*(Coth[c +
 d*x]^2)^(1/4)) - 2*Tanh[c + d*x]^2)/(5*b^3*d*Sqrt[b*Coth[c + d*x]])

Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.83

method result size
derivativedivides \(-\frac {\arctan \left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {7}{2}} d}+\frac {\operatorname {arctanh}\left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {7}{2}} d}-\frac {2}{5 b d \left (b \coth \left (d x +c \right )\right )^{\frac {5}{2}}}-\frac {2}{b^{3} d \sqrt {b \coth \left (d x +c \right )}}\) \(83\)
default \(-\frac {\arctan \left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {7}{2}} d}+\frac {\operatorname {arctanh}\left (\frac {\sqrt {b \coth \left (d x +c \right )}}{\sqrt {b}}\right )}{b^{\frac {7}{2}} d}-\frac {2}{5 b d \left (b \coth \left (d x +c \right )\right )^{\frac {5}{2}}}-\frac {2}{b^{3} d \sqrt {b \coth \left (d x +c \right )}}\) \(83\)

[In]

int(1/(b*coth(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

-arctan((b*coth(d*x+c))^(1/2)/b^(1/2))/b^(7/2)/d+arctanh((b*coth(d*x+c))^(1/2)/b^(1/2))/b^(7/2)/d-2/5/b/d/(b*c
oth(d*x+c))^(5/2)-2/b^3/d/(b*coth(d*x+c))^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1041 vs. \(2 (82) = 164\).

Time = 0.30 (sec) , antiderivative size = 2132, normalized size of antiderivative = 21.32 \[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=\text {Too large to display} \]

[In]

integrate(1/(b*coth(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

[-1/20*(10*(cosh(d*x + c)^6 + 6*cosh(d*x + c)*sinh(d*x + c)^5 + sinh(d*x + c)^6 + 3*(5*cosh(d*x + c)^2 + 1)*si
nh(d*x + c)^4 + 3*cosh(d*x + c)^4 + 4*(5*cosh(d*x + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*cosh(d*x +
c)^4 + 6*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^2 + 3*cosh(d*x + c)^2 + 6*(cosh(d*x + c)^5 + 2*cosh(d*x + c)^3 + c
osh(d*x + c))*sinh(d*x + c) + 1)*sqrt(-b)*arctan((cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x +
 c)^2)*sqrt(-b)*sqrt(b*cosh(d*x + c)/sinh(d*x + c))/(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*s
inh(d*x + c)^2 + b)) + 5*(cosh(d*x + c)^6 + 6*cosh(d*x + c)*sinh(d*x + c)^5 + sinh(d*x + c)^6 + 3*(5*cosh(d*x
+ c)^2 + 1)*sinh(d*x + c)^4 + 3*cosh(d*x + c)^4 + 4*(5*cosh(d*x + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^3 + 3*
(5*cosh(d*x + c)^4 + 6*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^2 + 3*cosh(d*x + c)^2 + 6*(cosh(d*x + c)^5 + 2*cosh(
d*x + c)^3 + cosh(d*x + c))*sinh(d*x + c) + 1)*sqrt(-b)*log(-(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)^3*sinh(d*x
 + c) + 6*b*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - 2*(cosh(
d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*sqrt(-b)*sqrt(b*cosh(d*x + c)/sinh(d*x + c))
 - 2*b)/(cosh(d*x + c)^4 + 4*cosh(d*x + c)^3*sinh(d*x + c) + 6*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*cosh(d*x +
c)*sinh(d*x + c)^3 + sinh(d*x + c)^4)) + 16*(3*cosh(d*x + c)^6 + 18*cosh(d*x + c)*sinh(d*x + c)^5 + 3*sinh(d*x
 + c)^6 + (45*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^4 + cosh(d*x + c)^4 + 4*(15*cosh(d*x + c)^3 + cosh(d*x + c))*
sinh(d*x + c)^3 + (45*cosh(d*x + c)^4 + 6*cosh(d*x + c)^2 - 1)*sinh(d*x + c)^2 - cosh(d*x + c)^2 + 2*(9*cosh(d
*x + c)^5 + 2*cosh(d*x + c)^3 - cosh(d*x + c))*sinh(d*x + c) - 3)*sqrt(b*cosh(d*x + c)/sinh(d*x + c)))/(b^4*d*
cosh(d*x + c)^6 + 6*b^4*d*cosh(d*x + c)*sinh(d*x + c)^5 + b^4*d*sinh(d*x + c)^6 + 3*b^4*d*cosh(d*x + c)^4 + 3*
b^4*d*cosh(d*x + c)^2 + b^4*d + 3*(5*b^4*d*cosh(d*x + c)^2 + b^4*d)*sinh(d*x + c)^4 + 4*(5*b^4*d*cosh(d*x + c)
^3 + 3*b^4*d*cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*b^4*d*cosh(d*x + c)^4 + 6*b^4*d*cosh(d*x + c)^2 + b^4*d)*si
nh(d*x + c)^2 + 6*(b^4*d*cosh(d*x + c)^5 + 2*b^4*d*cosh(d*x + c)^3 + b^4*d*cosh(d*x + c))*sinh(d*x + c)), -1/2
0*(10*(cosh(d*x + c)^6 + 6*cosh(d*x + c)*sinh(d*x + c)^5 + sinh(d*x + c)^6 + 3*(5*cosh(d*x + c)^2 + 1)*sinh(d*
x + c)^4 + 3*cosh(d*x + c)^4 + 4*(5*cosh(d*x + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*cosh(d*x + c)^4
+ 6*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^2 + 3*cosh(d*x + c)^2 + 6*(cosh(d*x + c)^5 + 2*cosh(d*x + c)^3 + cosh(d
*x + c))*sinh(d*x + c) + 1)*sqrt(b)*arctan(sqrt(b)*sqrt(b*cosh(d*x + c)/sinh(d*x + c))/(b*cosh(d*x + c)^2 + 2*
b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)) - 5*(cosh(d*x + c)^6 + 6*cosh(d*x + c)*sinh(d*x + c)^5
 + sinh(d*x + c)^6 + 3*(5*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^4 + 3*cosh(d*x + c)^4 + 4*(5*cosh(d*x + c)^3 + 3*
cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*cosh(d*x + c)^4 + 6*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^2 + 3*cosh(d*x +
c)^2 + 6*(cosh(d*x + c)^5 + 2*cosh(d*x + c)^3 + cosh(d*x + c))*sinh(d*x + c) + 1)*sqrt(b)*log(2*b*cosh(d*x + c
)^4 + 8*b*cosh(d*x + c)^3*sinh(d*x + c) + 12*b*cosh(d*x + c)^2*sinh(d*x + c)^2 + 8*b*cosh(d*x + c)*sinh(d*x +
c)^3 + 2*b*sinh(d*x + c)^4 + 2*(cosh(d*x + c)^4 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d*x + c)^4 + (6*cosh(
d*x + c)^2 - 1)*sinh(d*x + c)^2 - cosh(d*x + c)^2 + 2*(2*cosh(d*x + c)^3 - cosh(d*x + c))*sinh(d*x + c))*sqrt(
b)*sqrt(b*cosh(d*x + c)/sinh(d*x + c)) - b) + 16*(3*cosh(d*x + c)^6 + 18*cosh(d*x + c)*sinh(d*x + c)^5 + 3*sin
h(d*x + c)^6 + (45*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^4 + cosh(d*x + c)^4 + 4*(15*cosh(d*x + c)^3 + cosh(d*x +
 c))*sinh(d*x + c)^3 + (45*cosh(d*x + c)^4 + 6*cosh(d*x + c)^2 - 1)*sinh(d*x + c)^2 - cosh(d*x + c)^2 + 2*(9*c
osh(d*x + c)^5 + 2*cosh(d*x + c)^3 - cosh(d*x + c))*sinh(d*x + c) - 3)*sqrt(b*cosh(d*x + c)/sinh(d*x + c)))/(b
^4*d*cosh(d*x + c)^6 + 6*b^4*d*cosh(d*x + c)*sinh(d*x + c)^5 + b^4*d*sinh(d*x + c)^6 + 3*b^4*d*cosh(d*x + c)^4
 + 3*b^4*d*cosh(d*x + c)^2 + b^4*d + 3*(5*b^4*d*cosh(d*x + c)^2 + b^4*d)*sinh(d*x + c)^4 + 4*(5*b^4*d*cosh(d*x
 + c)^3 + 3*b^4*d*cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*b^4*d*cosh(d*x + c)^4 + 6*b^4*d*cosh(d*x + c)^2 + b^4*
d)*sinh(d*x + c)^2 + 6*(b^4*d*cosh(d*x + c)^5 + 2*b^4*d*cosh(d*x + c)^3 + b^4*d*cosh(d*x + c))*sinh(d*x + c))]

Sympy [F]

\[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=\int \frac {1}{\left (b \coth {\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx \]

[In]

integrate(1/(b*coth(d*x+c))**(7/2),x)

[Out]

Integral((b*coth(c + d*x))**(-7/2), x)

Maxima [F]

\[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=\int { \frac {1}{\left (b \coth \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(1/(b*coth(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*coth(d*x + c))^(-7/2), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(b*coth(d*x+c))^(7/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [B] (verification not implemented)

Time = 2.30 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.80 \[ \int \frac {1}{(b \coth (c+d x))^{7/2}} \, dx=\frac {\mathrm {atanh}\left (\frac {\sqrt {b\,\mathrm {coth}\left (c+d\,x\right )}}{\sqrt {b}}\right )}{b^{7/2}\,d}-\frac {\mathrm {atan}\left (\frac {\sqrt {b\,\mathrm {coth}\left (c+d\,x\right )}}{\sqrt {b}}\right )}{b^{7/2}\,d}-\frac {\frac {2}{5\,b}+\frac {2\,{\mathrm {coth}\left (c+d\,x\right )}^2}{b}}{d\,{\left (b\,\mathrm {coth}\left (c+d\,x\right )\right )}^{5/2}} \]

[In]

int(1/(b*coth(c + d*x))^(7/2),x)

[Out]

atanh((b*coth(c + d*x))^(1/2)/b^(1/2))/(b^(7/2)*d) - atan((b*coth(c + d*x))^(1/2)/b^(1/2))/(b^(7/2)*d) - (2/(5
*b) + (2*coth(c + d*x)^2)/b)/(d*(b*coth(c + d*x))^(5/2))