\(\int (1+\coth (x))^{3/2} \, dx\) [72]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 8, antiderivative size = 33 \[ \int (1+\coth (x))^{3/2} \, dx=2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1+\coth (x)}}{\sqrt {2}}\right )-2 \sqrt {1+\coth (x)} \]

[Out]

2*arctanh(1/2*(1+coth(x))^(1/2)*2^(1/2))*2^(1/2)-2*(1+coth(x))^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {3559, 3561, 212} \[ \int (1+\coth (x))^{3/2} \, dx=2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {\coth (x)+1}}{\sqrt {2}}\right )-2 \sqrt {\coth (x)+1} \]

[In]

Int[(1 + Coth[x])^(3/2),x]

[Out]

2*Sqrt[2]*ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]] - 2*Sqrt[1 + Coth[x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3559

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + b*Tan[c + d*x])^(n - 1)/(d*(n - 1))
), x] + Dist[2*a, Int[(a + b*Tan[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && G
tQ[n, 1]

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -2 \sqrt {1+\coth (x)}+2 \int \sqrt {1+\coth (x)} \, dx \\ & = -2 \sqrt {1+\coth (x)}+4 \text {Subst}\left (\int \frac {1}{2-x^2} \, dx,x,\sqrt {1+\coth (x)}\right ) \\ & = 2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1+\coth (x)}}{\sqrt {2}}\right )-2 \sqrt {1+\coth (x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.00 \[ \int (1+\coth (x))^{3/2} \, dx=2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1+\coth (x)}}{\sqrt {2}}\right )-2 \sqrt {1+\coth (x)} \]

[In]

Integrate[(1 + Coth[x])^(3/2),x]

[Out]

2*Sqrt[2]*ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]] - 2*Sqrt[1 + Coth[x]]

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.82

method result size
derivativedivides \(2 \,\operatorname {arctanh}\left (\frac {\sqrt {1+\coth \left (x \right )}\, \sqrt {2}}{2}\right ) \sqrt {2}-2 \sqrt {1+\coth \left (x \right )}\) \(27\)
default \(2 \,\operatorname {arctanh}\left (\frac {\sqrt {1+\coth \left (x \right )}\, \sqrt {2}}{2}\right ) \sqrt {2}-2 \sqrt {1+\coth \left (x \right )}\) \(27\)

[In]

int((1+coth(x))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*arctanh(1/2*(1+coth(x))^(1/2)*2^(1/2))*2^(1/2)-2*(1+coth(x))^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (26) = 52\).

Time = 0.25 (sec) , antiderivative size = 131, normalized size of antiderivative = 3.97 \[ \int (1+\coth (x))^{3/2} \, dx=-\frac {2 \, \sqrt {2} {\left (\sqrt {2} \cosh \left (x\right ) + \sqrt {2} \sinh \left (x\right )\right )} \sqrt {\frac {\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}} - {\left (\sqrt {2} \cosh \left (x\right )^{2} + 2 \, \sqrt {2} \cosh \left (x\right ) \sinh \left (x\right ) + \sqrt {2} \sinh \left (x\right )^{2} - \sqrt {2}\right )} \log \left (2 \, \sqrt {2} \sqrt {\frac {\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}} {\left (\cosh \left (x\right ) + \sinh \left (x\right )\right )} + 2 \, \cosh \left (x\right )^{2} + 4 \, \cosh \left (x\right ) \sinh \left (x\right ) + 2 \, \sinh \left (x\right )^{2} - 1\right )}{\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 1} \]

[In]

integrate((1+coth(x))^(3/2),x, algorithm="fricas")

[Out]

-(2*sqrt(2)*(sqrt(2)*cosh(x) + sqrt(2)*sinh(x))*sqrt(sinh(x)/(cosh(x) - sinh(x))) - (sqrt(2)*cosh(x)^2 + 2*sqr
t(2)*cosh(x)*sinh(x) + sqrt(2)*sinh(x)^2 - sqrt(2))*log(2*sqrt(2)*sqrt(sinh(x)/(cosh(x) - sinh(x)))*(cosh(x) +
 sinh(x)) + 2*cosh(x)^2 + 4*cosh(x)*sinh(x) + 2*sinh(x)^2 - 1))/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1
)

Sympy [F]

\[ \int (1+\coth (x))^{3/2} \, dx=\int \left (\coth {\left (x \right )} + 1\right )^{\frac {3}{2}}\, dx \]

[In]

integrate((1+coth(x))**(3/2),x)

[Out]

Integral((coth(x) + 1)**(3/2), x)

Maxima [F]

\[ \int (1+\coth (x))^{3/2} \, dx=\int { {\left (\coth \left (x\right ) + 1\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((1+coth(x))^(3/2),x, algorithm="maxima")

[Out]

integrate((coth(x) + 1)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 63 vs. \(2 (26) = 52\).

Time = 0.28 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.91 \[ \int (1+\coth (x))^{3/2} \, dx=-\sqrt {2} {\left (\frac {2}{\sqrt {e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )} + 1} + \log \left ({\left | 2 \, \sqrt {e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - 2 \, e^{\left (2 \, x\right )} + 1 \right |}\right )\right )} \mathrm {sgn}\left (e^{\left (2 \, x\right )} - 1\right ) \]

[In]

integrate((1+coth(x))^(3/2),x, algorithm="giac")

[Out]

-sqrt(2)*(2/(sqrt(e^(4*x) - e^(2*x)) - e^(2*x) + 1) + log(abs(2*sqrt(e^(4*x) - e^(2*x)) - 2*e^(2*x) + 1)))*sgn
(e^(2*x) - 1)

Mupad [B] (verification not implemented)

Time = 1.88 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.79 \[ \int (1+\coth (x))^{3/2} \, dx=2\,\sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {\mathrm {coth}\left (x\right )+1}}{2}\right )-2\,\sqrt {\mathrm {coth}\left (x\right )+1} \]

[In]

int((coth(x) + 1)^(3/2),x)

[Out]

2*2^(1/2)*atanh((2^(1/2)*(coth(x) + 1)^(1/2))/2) - 2*(coth(x) + 1)^(1/2)