\(\int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx\) [144]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 54 \[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {2}{a d \sqrt {a+b \text {sech}(c+d x)}} \]

[Out]

2*arctanh((a+b*sech(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d-2/a/d/(a+b*sech(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3970, 53, 65, 213} \[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {2}{a d \sqrt {a+b \text {sech}(c+d x)}} \]

[In]

Int[Tanh[c + d*x]/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

(2*ArcTanh[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) - 2/(a*d*Sqrt[a + b*Sech[c + d*x]])

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3970

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[(b^2 - x^2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {1}{x (a+x)^{3/2}} \, dx,x,b \text {sech}(c+d x)\right )}{d} \\ & = -\frac {2}{a d \sqrt {a+b \text {sech}(c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+x}} \, dx,x,b \text {sech}(c+d x)\right )}{a d} \\ & = -\frac {2}{a d \sqrt {a+b \text {sech}(c+d x)}}-\frac {2 \text {Subst}\left (\int \frac {1}{-a+x^2} \, dx,x,\sqrt {a+b \text {sech}(c+d x)}\right )}{a d} \\ & = \frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {2}{a d \sqrt {a+b \text {sech}(c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.25 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.80 \[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=-\frac {2 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},1+\frac {b \text {sech}(c+d x)}{a}\right )}{a d \sqrt {a+b \text {sech}(c+d x)}} \]

[In]

Integrate[Tanh[c + d*x]/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

(-2*Hypergeometric2F1[-1/2, 1, 1/2, 1 + (b*Sech[c + d*x])/a])/(a*d*Sqrt[a + b*Sech[c + d*x]])

Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.85

method result size
derivativedivides \(-\frac {\frac {2}{a \sqrt {a +b \,\operatorname {sech}\left (d x +c \right )}}-\frac {2 \,\operatorname {arctanh}\left (\frac {\sqrt {a +b \,\operatorname {sech}\left (d x +c \right )}}{\sqrt {a}}\right )}{a^{\frac {3}{2}}}}{d}\) \(46\)
default \(-\frac {\frac {2}{a \sqrt {a +b \,\operatorname {sech}\left (d x +c \right )}}-\frac {2 \,\operatorname {arctanh}\left (\frac {\sqrt {a +b \,\operatorname {sech}\left (d x +c \right )}}{\sqrt {a}}\right )}{a^{\frac {3}{2}}}}{d}\) \(46\)

[In]

int(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*(2/a/(a+b*sech(d*x+c))^(1/2)-2/a^(3/2)*arctanh((a+b*sech(d*x+c))^(1/2)/a^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 329 vs. \(2 (46) = 92\).

Time = 0.64 (sec) , antiderivative size = 917, normalized size of antiderivative = 16.98 \[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a*cosh(d*x + c)^2 + a*sinh(d*x + c)^2 + 2*b*cosh(d*x + c) + 2*(a*cosh(d*x + c) + b)*sinh(d*x + c) + a)*
sqrt(a)*log(-(2*a^2*cosh(d*x + c)^4 + 2*a^2*sinh(d*x + c)^4 + 4*a*b*cosh(d*x + c)^3 + 4*(2*a^2*cosh(d*x + c) +
 a*b)*sinh(d*x + c)^3 + 4*a*b*cosh(d*x + c) + (4*a^2 + b^2)*cosh(d*x + c)^2 + (12*a^2*cosh(d*x + c)^2 + 12*a*b
*cosh(d*x + c) + 4*a^2 + b^2)*sinh(d*x + c)^2 + 2*a^2 + 2*(a*cosh(d*x + c)^4 + a*sinh(d*x + c)^4 + b*cosh(d*x
+ c)^3 + (4*a*cosh(d*x + c) + b)*sinh(d*x + c)^3 + 2*a*cosh(d*x + c)^2 + (6*a*cosh(d*x + c)^2 + 3*b*cosh(d*x +
 c) + 2*a)*sinh(d*x + c)^2 + b*cosh(d*x + c) + (4*a*cosh(d*x + c)^3 + 3*b*cosh(d*x + c)^2 + 4*a*cosh(d*x + c)
+ b)*sinh(d*x + c) + a)*sqrt(a)*sqrt((a*cosh(d*x + c) + b)/cosh(d*x + c)) + 2*(4*a^2*cosh(d*x + c)^3 + 6*a*b*c
osh(d*x + c)^2 + 2*a*b + (4*a^2 + b^2)*cosh(d*x + c))*sinh(d*x + c))/(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d
*x + c) + sinh(d*x + c)^2)) - 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a)*
sqrt((a*cosh(d*x + c) + b)/cosh(d*x + c)))/(a^3*d*cosh(d*x + c)^2 + a^3*d*sinh(d*x + c)^2 + 2*a^2*b*d*cosh(d*x
 + c) + a^3*d + 2*(a^3*d*cosh(d*x + c) + a^2*b*d)*sinh(d*x + c)), -((a*cosh(d*x + c)^2 + a*sinh(d*x + c)^2 + 2
*b*cosh(d*x + c) + 2*(a*cosh(d*x + c) + b)*sinh(d*x + c) + a)*sqrt(-a)*arctan((a*cosh(d*x + c)^2 + a*sinh(d*x
+ c)^2 + b*cosh(d*x + c) + (2*a*cosh(d*x + c) + b)*sinh(d*x + c) + a)*sqrt(-a)*sqrt((a*cosh(d*x + c) + b)/cosh
(d*x + c))/(a^2*cosh(d*x + c)^2 + a^2*sinh(d*x + c)^2 + 2*a*b*cosh(d*x + c) + a^2 + 2*(a^2*cosh(d*x + c) + a*b
)*sinh(d*x + c))) + 2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a)*sqrt((a*co
sh(d*x + c) + b)/cosh(d*x + c)))/(a^3*d*cosh(d*x + c)^2 + a^3*d*sinh(d*x + c)^2 + 2*a^2*b*d*cosh(d*x + c) + a^
3*d + 2*(a^3*d*cosh(d*x + c) + a^2*b*d)*sinh(d*x + c))]

Sympy [F]

\[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int \frac {\tanh {\left (c + d x \right )}}{\left (a + b \operatorname {sech}{\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))**(3/2),x)

[Out]

Integral(tanh(c + d*x)/(a + b*sech(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int { \frac {\tanh \left (d x + c\right )}{{\left (b \operatorname {sech}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(tanh(d*x + c)/(b*sech(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int { \frac {\tanh \left (d x + c\right )}{{\left (b \operatorname {sech}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(tanh(d*x + c)/(b*sech(d*x + c) + a)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 2.40 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.93 \[ \int \frac {\tanh (c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\frac {2\,\mathrm {atanh}\left (\frac {\sqrt {a+\frac {b}{\mathrm {cosh}\left (c+d\,x\right )}}}{\sqrt {a}}\right )}{a^{3/2}\,d}-\frac {2}{a\,d\,\sqrt {a+\frac {b}{\mathrm {cosh}\left (c+d\,x\right )}}} \]

[In]

int(tanh(c + d*x)/(a + b/cosh(c + d*x))^(3/2),x)

[Out]

(2*atanh((a + b/cosh(c + d*x))^(1/2)/a^(1/2)))/(a^(3/2)*d) - 2/(a*d*(a + b/cosh(c + d*x))^(1/2))