\(\int \frac {\text {csch}^5(a+b \log (c x^n))}{x} \, dx\) [169]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 89 \[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {3 \text {arctanh}\left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )}{8 b n}+\frac {3 \coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}\left (a+b \log \left (c x^n\right )\right )}{8 b n}-\frac {\coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}^3\left (a+b \log \left (c x^n\right )\right )}{4 b n} \]

[Out]

-3/8*arctanh(cosh(a+b*ln(c*x^n)))/b/n+3/8*coth(a+b*ln(c*x^n))*csch(a+b*ln(c*x^n))/b/n-1/4*coth(a+b*ln(c*x^n))*
csch(a+b*ln(c*x^n))^3/b/n

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3853, 3855} \[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {3 \text {arctanh}\left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )}{8 b n}-\frac {\coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}^3\left (a+b \log \left (c x^n\right )\right )}{4 b n}+\frac {3 \coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}\left (a+b \log \left (c x^n\right )\right )}{8 b n} \]

[In]

Int[Csch[a + b*Log[c*x^n]]^5/x,x]

[Out]

(-3*ArcTanh[Cosh[a + b*Log[c*x^n]]])/(8*b*n) + (3*Coth[a + b*Log[c*x^n]]*Csch[a + b*Log[c*x^n]])/(8*b*n) - (Co
th[a + b*Log[c*x^n]]*Csch[a + b*Log[c*x^n]]^3)/(4*b*n)

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \text {csch}^5(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n} \\ & = -\frac {\coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}^3\left (a+b \log \left (c x^n\right )\right )}{4 b n}-\frac {3 \text {Subst}\left (\int \text {csch}^3(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{4 n} \\ & = \frac {3 \coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}\left (a+b \log \left (c x^n\right )\right )}{8 b n}-\frac {\coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}^3\left (a+b \log \left (c x^n\right )\right )}{4 b n}+\frac {3 \text {Subst}\left (\int \text {csch}(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{8 n} \\ & = -\frac {3 \text {arctanh}\left (\cosh \left (a+b \log \left (c x^n\right )\right )\right )}{8 b n}+\frac {3 \coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}\left (a+b \log \left (c x^n\right )\right )}{8 b n}-\frac {\coth \left (a+b \log \left (c x^n\right )\right ) \text {csch}^3\left (a+b \log \left (c x^n\right )\right )}{4 b n} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.81 \[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {3 \text {csch}^2\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right )}{32 b n}-\frac {\text {csch}^4\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right )}{64 b n}-\frac {3 \log \left (\cosh \left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right )\right )}{8 b n}+\frac {3 \log \left (\sinh \left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right )\right )}{8 b n}+\frac {3 \text {sech}^2\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right )}{32 b n}+\frac {\text {sech}^4\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right )}{64 b n} \]

[In]

Integrate[Csch[a + b*Log[c*x^n]]^5/x,x]

[Out]

(3*Csch[(a + b*Log[c*x^n])/2]^2)/(32*b*n) - Csch[(a + b*Log[c*x^n])/2]^4/(64*b*n) - (3*Log[Cosh[(a + b*Log[c*x
^n])/2]])/(8*b*n) + (3*Log[Sinh[(a + b*Log[c*x^n])/2]])/(8*b*n) + (3*Sech[(a + b*Log[c*x^n])/2]^2)/(32*b*n) +
Sech[(a + b*Log[c*x^n])/2]^4/(64*b*n)

Maple [A] (verified)

Time = 21.53 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.72

method result size
derivativedivides \(\frac {\left (-\frac {{\operatorname {csch}\left (a +b \ln \left (c \,x^{n}\right )\right )}^{3}}{4}+\frac {3 \,\operatorname {csch}\left (a +b \ln \left (c \,x^{n}\right )\right )}{8}\right ) \coth \left (a +b \ln \left (c \,x^{n}\right )\right )-\frac {3 \,\operatorname {arctanh}\left ({\mathrm e}^{a +b \ln \left (c \,x^{n}\right )}\right )}{4}}{n b}\) \(64\)
default \(\frac {\left (-\frac {{\operatorname {csch}\left (a +b \ln \left (c \,x^{n}\right )\right )}^{3}}{4}+\frac {3 \,\operatorname {csch}\left (a +b \ln \left (c \,x^{n}\right )\right )}{8}\right ) \coth \left (a +b \ln \left (c \,x^{n}\right )\right )-\frac {3 \,\operatorname {arctanh}\left ({\mathrm e}^{a +b \ln \left (c \,x^{n}\right )}\right )}{4}}{n b}\) \(64\)
parallelrisch \(\frac {-{\coth \left (\frac {a}{2}+b \ln \left (\sqrt {c \,x^{n}}\right )\right )}^{4}+{\tanh \left (\frac {a}{2}+b \ln \left (\sqrt {c \,x^{n}}\right )\right )}^{4}-8 {\tanh \left (\frac {a}{2}+b \ln \left (\sqrt {c \,x^{n}}\right )\right )}^{2}+24 \ln \left (\tanh \left (\frac {a}{2}+b \ln \left (\sqrt {c \,x^{n}}\right )\right )\right )+8 {\coth \left (\frac {a}{2}+b \ln \left (\sqrt {c \,x^{n}}\right )\right )}^{2}}{64 b n}\) \(102\)
risch \(\text {Expression too large to display}\) \(744\)

[In]

int(csch(a+b*ln(c*x^n))^5/x,x,method=_RETURNVERBOSE)

[Out]

1/n/b*((-1/4*csch(a+b*ln(c*x^n))^3+3/8*csch(a+b*ln(c*x^n)))*coth(a+b*ln(c*x^n))-3/4*arctanh(exp(a+b*ln(c*x^n))
))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1806 vs. \(2 (83) = 166\).

Time = 0.27 (sec) , antiderivative size = 1806, normalized size of antiderivative = 20.29 \[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Too large to display} \]

[In]

integrate(csch(a+b*log(c*x^n))^5/x,x, algorithm="fricas")

[Out]

1/8*(6*cosh(b*n*log(x) + b*log(c) + a)^7 + 42*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a)^
6 + 6*sinh(b*n*log(x) + b*log(c) + a)^7 + 2*(63*cosh(b*n*log(x) + b*log(c) + a)^2 - 11)*sinh(b*n*log(x) + b*lo
g(c) + a)^5 - 22*cosh(b*n*log(x) + b*log(c) + a)^5 + 10*(21*cosh(b*n*log(x) + b*log(c) + a)^3 - 11*cosh(b*n*lo
g(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^4 + 2*(105*cosh(b*n*log(x) + b*log(c) + a)^4 - 110*cosh(
b*n*log(x) + b*log(c) + a)^2 - 11)*sinh(b*n*log(x) + b*log(c) + a)^3 - 22*cosh(b*n*log(x) + b*log(c) + a)^3 +
2*(63*cosh(b*n*log(x) + b*log(c) + a)^5 - 110*cosh(b*n*log(x) + b*log(c) + a)^3 - 33*cosh(b*n*log(x) + b*log(c
) + a))*sinh(b*n*log(x) + b*log(c) + a)^2 - 3*(cosh(b*n*log(x) + b*log(c) + a)^8 + 8*cosh(b*n*log(x) + b*log(c
) + a)*sinh(b*n*log(x) + b*log(c) + a)^7 + sinh(b*n*log(x) + b*log(c) + a)^8 + 4*(7*cosh(b*n*log(x) + b*log(c)
 + a)^2 - 1)*sinh(b*n*log(x) + b*log(c) + a)^6 - 4*cosh(b*n*log(x) + b*log(c) + a)^6 + 8*(7*cosh(b*n*log(x) +
b*log(c) + a)^3 - 3*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^5 + 2*(35*cosh(b*n*log(x)
 + b*log(c) + a)^4 - 30*cosh(b*n*log(x) + b*log(c) + a)^2 + 3)*sinh(b*n*log(x) + b*log(c) + a)^4 + 6*cosh(b*n*
log(x) + b*log(c) + a)^4 + 8*(7*cosh(b*n*log(x) + b*log(c) + a)^5 - 10*cosh(b*n*log(x) + b*log(c) + a)^3 + 3*c
osh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^3 + 4*(7*cosh(b*n*log(x) + b*log(c) + a)^6 - 1
5*cosh(b*n*log(x) + b*log(c) + a)^4 + 9*cosh(b*n*log(x) + b*log(c) + a)^2 - 1)*sinh(b*n*log(x) + b*log(c) + a)
^2 - 4*cosh(b*n*log(x) + b*log(c) + a)^2 + 8*(cosh(b*n*log(x) + b*log(c) + a)^7 - 3*cosh(b*n*log(x) + b*log(c)
 + a)^5 + 3*cosh(b*n*log(x) + b*log(c) + a)^3 - cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) +
a) + 1)*log(cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a) + 1) + 3*(cosh(b*n*log(x) + b*lo
g(c) + a)^8 + 8*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a)^7 + sinh(b*n*log(x) + b*log(c)
 + a)^8 + 4*(7*cosh(b*n*log(x) + b*log(c) + a)^2 - 1)*sinh(b*n*log(x) + b*log(c) + a)^6 - 4*cosh(b*n*log(x) +
b*log(c) + a)^6 + 8*(7*cosh(b*n*log(x) + b*log(c) + a)^3 - 3*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x)
+ b*log(c) + a)^5 + 2*(35*cosh(b*n*log(x) + b*log(c) + a)^4 - 30*cosh(b*n*log(x) + b*log(c) + a)^2 + 3)*sinh(b
*n*log(x) + b*log(c) + a)^4 + 6*cosh(b*n*log(x) + b*log(c) + a)^4 + 8*(7*cosh(b*n*log(x) + b*log(c) + a)^5 - 1
0*cosh(b*n*log(x) + b*log(c) + a)^3 + 3*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^3 + 4
*(7*cosh(b*n*log(x) + b*log(c) + a)^6 - 15*cosh(b*n*log(x) + b*log(c) + a)^4 + 9*cosh(b*n*log(x) + b*log(c) +
a)^2 - 1)*sinh(b*n*log(x) + b*log(c) + a)^2 - 4*cosh(b*n*log(x) + b*log(c) + a)^2 + 8*(cosh(b*n*log(x) + b*log
(c) + a)^7 - 3*cosh(b*n*log(x) + b*log(c) + a)^5 + 3*cosh(b*n*log(x) + b*log(c) + a)^3 - cosh(b*n*log(x) + b*l
og(c) + a))*sinh(b*n*log(x) + b*log(c) + a) + 1)*log(cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log
(c) + a) - 1) + 2*(21*cosh(b*n*log(x) + b*log(c) + a)^6 - 55*cosh(b*n*log(x) + b*log(c) + a)^4 - 33*cosh(b*n*l
og(x) + b*log(c) + a)^2 + 3)*sinh(b*n*log(x) + b*log(c) + a) + 6*cosh(b*n*log(x) + b*log(c) + a))/(b*n*cosh(b*
n*log(x) + b*log(c) + a)^8 + 8*b*n*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a)^7 + b*n*sin
h(b*n*log(x) + b*log(c) + a)^8 - 4*b*n*cosh(b*n*log(x) + b*log(c) + a)^6 + 4*(7*b*n*cosh(b*n*log(x) + b*log(c)
 + a)^2 - b*n)*sinh(b*n*log(x) + b*log(c) + a)^6 + 6*b*n*cosh(b*n*log(x) + b*log(c) + a)^4 + 8*(7*b*n*cosh(b*n
*log(x) + b*log(c) + a)^3 - 3*b*n*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^5 + 2*(35*b
*n*cosh(b*n*log(x) + b*log(c) + a)^4 - 30*b*n*cosh(b*n*log(x) + b*log(c) + a)^2 + 3*b*n)*sinh(b*n*log(x) + b*l
og(c) + a)^4 - 4*b*n*cosh(b*n*log(x) + b*log(c) + a)^2 + 8*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^5 - 10*b*n*c
osh(b*n*log(x) + b*log(c) + a)^3 + 3*b*n*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a)^3 +
4*(7*b*n*cosh(b*n*log(x) + b*log(c) + a)^6 - 15*b*n*cosh(b*n*log(x) + b*log(c) + a)^4 + 9*b*n*cosh(b*n*log(x)
+ b*log(c) + a)^2 - b*n)*sinh(b*n*log(x) + b*log(c) + a)^2 + b*n + 8*(b*n*cosh(b*n*log(x) + b*log(c) + a)^7 -
3*b*n*cosh(b*n*log(x) + b*log(c) + a)^5 + 3*b*n*cosh(b*n*log(x) + b*log(c) + a)^3 - b*n*cosh(b*n*log(x) + b*lo
g(c) + a))*sinh(b*n*log(x) + b*log(c) + a))

Sympy [F]

\[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\operatorname {csch}^{5}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{x}\, dx \]

[In]

integrate(csch(a+b*ln(c*x**n))**5/x,x)

[Out]

Integral(csch(a + b*log(c*x**n))**5/x, x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 232 vs. \(2 (83) = 166\).

Time = 0.21 (sec) , antiderivative size = 232, normalized size of antiderivative = 2.61 \[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {3 \, c^{7 \, b} e^{\left (7 \, b \log \left (x^{n}\right ) + 7 \, a\right )} - 11 \, c^{5 \, b} e^{\left (5 \, b \log \left (x^{n}\right ) + 5 \, a\right )} - 11 \, c^{3 \, b} e^{\left (3 \, b \log \left (x^{n}\right ) + 3 \, a\right )} + 3 \, c^{b} e^{\left (b \log \left (x^{n}\right ) + a\right )}}{4 \, {\left (b c^{8 \, b} n e^{\left (8 \, b \log \left (x^{n}\right ) + 8 \, a\right )} - 4 \, b c^{6 \, b} n e^{\left (6 \, b \log \left (x^{n}\right ) + 6 \, a\right )} + 6 \, b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 4 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} - \frac {3 \, \log \left (\frac {{\left (c^{b} e^{\left (b \log \left (x^{n}\right ) + a\right )} + 1\right )} e^{\left (-a\right )}}{c^{b}}\right )}{8 \, b n} + \frac {3 \, \log \left (\frac {{\left (c^{b} e^{\left (b \log \left (x^{n}\right ) + a\right )} - 1\right )} e^{\left (-a\right )}}{c^{b}}\right )}{8 \, b n} \]

[In]

integrate(csch(a+b*log(c*x^n))^5/x,x, algorithm="maxima")

[Out]

1/4*(3*c^(7*b)*e^(7*b*log(x^n) + 7*a) - 11*c^(5*b)*e^(5*b*log(x^n) + 5*a) - 11*c^(3*b)*e^(3*b*log(x^n) + 3*a)
+ 3*c^b*e^(b*log(x^n) + a))/(b*c^(8*b)*n*e^(8*b*log(x^n) + 8*a) - 4*b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 6*b*c
^(4*b)*n*e^(4*b*log(x^n) + 4*a) - 4*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) - 3/8*log((c^b*e^(b*log(x^n) + a
) + 1)*e^(-a)/c^b)/(b*n) + 3/8*log((c^b*e^(b*log(x^n) + a) - 1)*e^(-a)/c^b)/(b*n)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 248 vs. \(2 (83) = 166\).

Time = 0.35 (sec) , antiderivative size = 248, normalized size of antiderivative = 2.79 \[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {1}{8} \, c^{5 \, b} {\left (\frac {3 \, c^{b} e^{\left (-5 \, a\right )} \log \left (\sqrt {2 \, x^{b n} {\left | c \right |}^{b} \cos \left (-\frac {1}{2} \, \pi b \mathrm {sgn}\left (c\right ) + \frac {1}{2} \, \pi b\right ) e^{a} + x^{2 \, b n} {\left | c \right |}^{2 \, b} e^{\left (2 \, a\right )} + 1}\right )}{b c^{6 \, b} n} - \frac {3 \, c^{b} e^{\left (-5 \, a\right )} \log \left (\sqrt {-2 \, x^{b n} {\left | c \right |}^{b} \cos \left (-\frac {1}{2} \, \pi b \mathrm {sgn}\left (c\right ) + \frac {1}{2} \, \pi b\right ) e^{a} + x^{2 \, b n} {\left | c \right |}^{2 \, b} e^{\left (2 \, a\right )} + 1}\right )}{b c^{6 \, b} n} - \frac {2 \, {\left (3 \, c^{6 \, b} x^{7 \, b n} e^{\left (6 \, a\right )} - 11 \, c^{4 \, b} x^{5 \, b n} e^{\left (4 \, a\right )} - 11 \, c^{2 \, b} x^{3 \, b n} e^{\left (2 \, a\right )} + 3 \, x^{b n}\right )} e^{\left (-4 \, a\right )}}{{\left (c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} - 1\right )}^{4} b c^{4 \, b} n}\right )} e^{\left (5 \, a\right )} \]

[In]

integrate(csch(a+b*log(c*x^n))^5/x,x, algorithm="giac")

[Out]

-1/8*c^(5*b)*(3*c^b*e^(-5*a)*log(sqrt(2*x^(b*n)*abs(c)^b*cos(-1/2*pi*b*sgn(c) + 1/2*pi*b)*e^a + x^(2*b*n)*abs(
c)^(2*b)*e^(2*a) + 1))/(b*c^(6*b)*n) - 3*c^b*e^(-5*a)*log(sqrt(-2*x^(b*n)*abs(c)^b*cos(-1/2*pi*b*sgn(c) + 1/2*
pi*b)*e^a + x^(2*b*n)*abs(c)^(2*b)*e^(2*a) + 1))/(b*c^(6*b)*n) - 2*(3*c^(6*b)*x^(7*b*n)*e^(6*a) - 11*c^(4*b)*x
^(5*b*n)*e^(4*a) - 11*c^(2*b)*x^(3*b*n)*e^(2*a) + 3*x^(b*n))*e^(-4*a)/((c^(2*b)*x^(2*b*n)*e^(2*a) - 1)^4*b*c^(
4*b)*n))*e^(5*a)

Mupad [B] (verification not implemented)

Time = 2.23 (sec) , antiderivative size = 318, normalized size of antiderivative = 3.57 \[ \int \frac {\text {csch}^5\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2\,{\mathrm {e}}^{-a}}{{\left (c\,x^n\right )}^b\,\left (b\,n-\frac {3\,b\,n\,{\mathrm {e}}^{-2\,a}}{{\left (c\,x^n\right )}^{2\,b}}+\frac {3\,b\,n\,{\mathrm {e}}^{-4\,a}}{{\left (c\,x^n\right )}^{4\,b}}-\frac {b\,n\,{\mathrm {e}}^{-6\,a}}{{\left (c\,x^n\right )}^{6\,b}}\right )}-\frac {3\,\mathrm {atan}\left (\frac {{\mathrm {e}}^{-a}\,\sqrt {-b^2\,n^2}}{b\,n\,{\left (c\,x^n\right )}^b}\right )}{4\,\sqrt {-b^2\,n^2}}-\frac {3\,{\mathrm {e}}^{-a}}{4\,{\left (c\,x^n\right )}^b\,\left (b\,n-\frac {b\,n\,{\mathrm {e}}^{-2\,a}}{{\left (c\,x^n\right )}^{2\,b}}\right )}-\frac {4\,{\mathrm {e}}^{-3\,a}}{{\left (c\,x^n\right )}^{3\,b}\,\left (b\,n-\frac {4\,b\,n\,{\mathrm {e}}^{-2\,a}}{{\left (c\,x^n\right )}^{2\,b}}+\frac {6\,b\,n\,{\mathrm {e}}^{-4\,a}}{{\left (c\,x^n\right )}^{4\,b}}-\frac {4\,b\,n\,{\mathrm {e}}^{-6\,a}}{{\left (c\,x^n\right )}^{6\,b}}+\frac {b\,n\,{\mathrm {e}}^{-8\,a}}{{\left (c\,x^n\right )}^{8\,b}}\right )}-\frac {{\mathrm {e}}^{-a}}{2\,{\left (c\,x^n\right )}^b\,\left (b\,n-\frac {2\,b\,n\,{\mathrm {e}}^{-2\,a}}{{\left (c\,x^n\right )}^{2\,b}}+\frac {b\,n\,{\mathrm {e}}^{-4\,a}}{{\left (c\,x^n\right )}^{4\,b}}\right )} \]

[In]

int(1/(x*sinh(a + b*log(c*x^n))^5),x)

[Out]

(2*exp(-a))/((c*x^n)^b*(b*n - (3*b*n*exp(-2*a))/(c*x^n)^(2*b) + (3*b*n*exp(-4*a))/(c*x^n)^(4*b) - (b*n*exp(-6*
a))/(c*x^n)^(6*b))) - (3*atan((exp(-a)*(-b^2*n^2)^(1/2))/(b*n*(c*x^n)^b)))/(4*(-b^2*n^2)^(1/2)) - (3*exp(-a))/
(4*(c*x^n)^b*(b*n - (b*n*exp(-2*a))/(c*x^n)^(2*b))) - (4*exp(-3*a))/((c*x^n)^(3*b)*(b*n - (4*b*n*exp(-2*a))/(c
*x^n)^(2*b) + (6*b*n*exp(-4*a))/(c*x^n)^(4*b) - (4*b*n*exp(-6*a))/(c*x^n)^(6*b) + (b*n*exp(-8*a))/(c*x^n)^(8*b
))) - exp(-a)/(2*(c*x^n)^b*(b*n - (2*b*n*exp(-2*a))/(c*x^n)^(2*b) + (b*n*exp(-4*a))/(c*x^n)^(4*b)))