\(\int \frac {1}{(-\text {csch}^2(x))^{5/2}} \, dx\) [27]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 49 \[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=\frac {\coth (x)}{5 \left (-\text {csch}^2(x)\right )^{5/2}}+\frac {4 \coth (x)}{15 \left (-\text {csch}^2(x)\right )^{3/2}}+\frac {8 \coth (x)}{15 \sqrt {-\text {csch}^2(x)}} \]

[Out]

1/5*coth(x)/(-csch(x)^2)^(5/2)+4/15*coth(x)/(-csch(x)^2)^(3/2)+8/15*coth(x)/(-csch(x)^2)^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {4207, 198, 197} \[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=\frac {8 \coth (x)}{15 \sqrt {-\text {csch}^2(x)}}+\frac {4 \coth (x)}{15 \left (-\text {csch}^2(x)\right )^{3/2}}+\frac {\coth (x)}{5 \left (-\text {csch}^2(x)\right )^{5/2}} \]

[In]

Int[(-Csch[x]^2)^(-5/2),x]

[Out]

Coth[x]/(5*(-Csch[x]^2)^(5/2)) + (4*Coth[x])/(15*(-Csch[x]^2)^(3/2)) + (8*Coth[x])/(15*Sqrt[-Csch[x]^2])

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 4207

Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[b*(ff/
f), Subst[Int[(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{b, e, f, p}, x] &&  !IntegerQ[p
]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {1}{\left (1-x^2\right )^{7/2}} \, dx,x,\coth (x)\right ) \\ & = \frac {\coth (x)}{5 \left (-\text {csch}^2(x)\right )^{5/2}}+\frac {4}{5} \text {Subst}\left (\int \frac {1}{\left (1-x^2\right )^{5/2}} \, dx,x,\coth (x)\right ) \\ & = \frac {\coth (x)}{5 \left (-\text {csch}^2(x)\right )^{5/2}}+\frac {4 \coth (x)}{15 \left (-\text {csch}^2(x)\right )^{3/2}}+\frac {8}{15} \text {Subst}\left (\int \frac {1}{\left (1-x^2\right )^{3/2}} \, dx,x,\coth (x)\right ) \\ & = \frac {\coth (x)}{5 \left (-\text {csch}^2(x)\right )^{5/2}}+\frac {4 \coth (x)}{15 \left (-\text {csch}^2(x)\right )^{3/2}}+\frac {8 \coth (x)}{15 \sqrt {-\text {csch}^2(x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.67 \[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=\frac {(150 \cosh (x)-25 \cosh (3 x)+3 \cosh (5 x)) \text {csch}(x)}{240 \sqrt {-\text {csch}^2(x)}} \]

[In]

Integrate[(-Csch[x]^2)^(-5/2),x]

[Out]

((150*Cosh[x] - 25*Cosh[3*x] + 3*Cosh[5*x])*Csch[x])/(240*Sqrt[-Csch[x]^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(177\) vs. \(2(37)=74\).

Time = 0.15 (sec) , antiderivative size = 178, normalized size of antiderivative = 3.63

method result size
risch \(\frac {{\mathrm e}^{6 x}}{160 \left ({\mathrm e}^{2 x}-1\right ) \sqrt {-\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{2 x}-1\right )^{2}}}}-\frac {5 \,{\mathrm e}^{4 x}}{96 \left ({\mathrm e}^{2 x}-1\right ) \sqrt {-\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{2 x}-1\right )^{2}}}}+\frac {5 \,{\mathrm e}^{2 x}}{16 \sqrt {-\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{2 x}-1\right )^{2}}}\, \left ({\mathrm e}^{2 x}-1\right )}+\frac {5}{16 \left ({\mathrm e}^{2 x}-1\right ) \sqrt {-\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{2 x}-1\right )^{2}}}}-\frac {5 \,{\mathrm e}^{-2 x}}{96 \left ({\mathrm e}^{2 x}-1\right ) \sqrt {-\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{2 x}-1\right )^{2}}}}+\frac {{\mathrm e}^{-4 x}}{160 \left ({\mathrm e}^{2 x}-1\right ) \sqrt {-\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{2 x}-1\right )^{2}}}}\) \(178\)

[In]

int(1/(-csch(x)^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/160*exp(6*x)/(exp(2*x)-1)/(-1/(exp(2*x)-1)^2*exp(2*x))^(1/2)-5/96*exp(4*x)/(exp(2*x)-1)/(-1/(exp(2*x)-1)^2*e
xp(2*x))^(1/2)+5/16/(-1/(exp(2*x)-1)^2*exp(2*x))^(1/2)/(exp(2*x)-1)*exp(2*x)+5/16/(exp(2*x)-1)/(-1/(exp(2*x)-1
)^2*exp(2*x))^(1/2)-5/96*exp(-2*x)/(exp(2*x)-1)/(-1/(exp(2*x)-1)^2*exp(2*x))^(1/2)+1/160*exp(-4*x)/(exp(2*x)-1
)/(-1/(exp(2*x)-1)^2*exp(2*x))^(1/2)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.78 \[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=\frac {1}{480} \, {\left (-3 i \, e^{\left (10 \, x\right )} + 25 i \, e^{\left (8 \, x\right )} - 150 i \, e^{\left (6 \, x\right )} - 150 i \, e^{\left (4 \, x\right )} + 25 i \, e^{\left (2 \, x\right )} - 3 i\right )} e^{\left (-5 \, x\right )} \]

[In]

integrate(1/(-csch(x)^2)^(5/2),x, algorithm="fricas")

[Out]

1/480*(-3*I*e^(10*x) + 25*I*e^(8*x) - 150*I*e^(6*x) - 150*I*e^(4*x) + 25*I*e^(2*x) - 3*I)*e^(-5*x)

Sympy [F]

\[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=\int \frac {1}{\left (- \operatorname {csch}^{2}{\left (x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(1/(-csch(x)**2)**(5/2),x)

[Out]

Integral((-csch(x)**2)**(-5/2), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.71 \[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=\frac {1}{160} i \, e^{\left (5 \, x\right )} - \frac {5}{96} i \, e^{\left (3 \, x\right )} + \frac {5}{16} i \, e^{\left (-x\right )} - \frac {5}{96} i \, e^{\left (-3 \, x\right )} + \frac {1}{160} i \, e^{\left (-5 \, x\right )} + \frac {5}{16} i \, e^{x} \]

[In]

integrate(1/(-csch(x)^2)^(5/2),x, algorithm="maxima")

[Out]

1/160*I*e^(5*x) - 5/96*I*e^(3*x) + 5/16*I*e^(-x) - 5/96*I*e^(-3*x) + 1/160*I*e^(-5*x) + 5/16*I*e^x

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.02 \[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=-\frac {{\left (-150 i \, e^{\left (4 \, x\right )} + 25 i \, e^{\left (2 \, x\right )} - 3 i\right )} e^{\left (-5 \, x\right )} - 3 i \, e^{\left (5 \, x\right )} + 25 i \, e^{\left (3 \, x\right )} - 150 i \, e^{x}}{480 \, \mathrm {sgn}\left (-e^{\left (3 \, x\right )} + e^{x}\right )} \]

[In]

integrate(1/(-csch(x)^2)^(5/2),x, algorithm="giac")

[Out]

-1/480*((-150*I*e^(4*x) + 25*I*e^(2*x) - 3*I)*e^(-5*x) - 3*I*e^(5*x) + 25*I*e^(3*x) - 150*I*e^x)/sgn(-e^(3*x)
+ e^x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (-\text {csch}^2(x)\right )^{5/2}} \, dx=\int \frac {1}{{\left (-\frac {1}{{\mathrm {sinh}\left (x\right )}^2}\right )}^{5/2}} \,d x \]

[In]

int(1/(-1/sinh(x)^2)^(5/2),x)

[Out]

int(1/(-1/sinh(x)^2)^(5/2), x)