Integrand size = 15, antiderivative size = 27 \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=\frac {\log (\sinh (a+b x))}{b}+\frac {\sinh ^2(a+b x)}{2 b} \]
[Out]
Time = 0.02 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2670, 14} \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=\frac {\sinh ^2(a+b x)}{2 b}+\frac {\log (\sinh (a+b x))}{b} \]
[In]
[Out]
Rule 14
Rule 2670
Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1-x^2}{x} \, dx,x,-i \sinh (a+b x)\right )}{b} \\ & = \frac {\text {Subst}\left (\int \left (\frac {1}{x}-x\right ) \, dx,x,-i \sinh (a+b x)\right )}{b} \\ & = \frac {\log (\sinh (a+b x))}{b}+\frac {\sinh ^2(a+b x)}{2 b} \\ \end{align*}
Time = 0.02 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.93 \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=\frac {2 \log (\sinh (a+b x))+\sinh ^2(a+b x)}{2 b} \]
[In]
[Out]
Time = 0.50 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.85
| method | result | size |
| derivativedivides | \(\frac {\frac {\cosh \left (b x +a \right )^{2}}{2}+\ln \left (\sinh \left (b x +a \right )\right )}{b}\) | \(23\) |
| default | \(\frac {\frac {\cosh \left (b x +a \right )^{2}}{2}+\ln \left (\sinh \left (b x +a \right )\right )}{b}\) | \(23\) |
| risch | \(-x +\frac {{\mathrm e}^{2 b x +2 a}}{8 b}+\frac {{\mathrm e}^{-2 b x -2 a}}{8 b}-\frac {2 a}{b}+\frac {\ln \left ({\mathrm e}^{2 b x +2 a}-1\right )}{b}\) | \(55\) |
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 203 vs. \(2 (25) = 50\).
Time = 0.25 (sec) , antiderivative size = 203, normalized size of antiderivative = 7.52 \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=-\frac {8 \, b x \cosh \left (b x + a\right )^{2} - \cosh \left (b x + a\right )^{4} - 4 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right )^{3} - \sinh \left (b x + a\right )^{4} + 2 \, {\left (4 \, b x - 3 \, \cosh \left (b x + a\right )^{2}\right )} \sinh \left (b x + a\right )^{2} - 8 \, {\left (\cosh \left (b x + a\right )^{2} + 2 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + \sinh \left (b x + a\right )^{2}\right )} \log \left (\frac {2 \, \sinh \left (b x + a\right )}{\cosh \left (b x + a\right ) - \sinh \left (b x + a\right )}\right ) + 4 \, {\left (4 \, b x \cosh \left (b x + a\right ) - \cosh \left (b x + a\right )^{3}\right )} \sinh \left (b x + a\right ) - 1}{8 \, {\left (b \cosh \left (b x + a\right )^{2} + 2 \, b \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + b \sinh \left (b x + a\right )^{2}\right )}} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 105 vs. \(2 (20) = 40\).
Time = 0.83 (sec) , antiderivative size = 105, normalized size of antiderivative = 3.89 \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=\begin {cases} \tilde {\infty } x & \text {for}\: a = 0 \wedge b = 0 \\x \cosh ^{2}{\left (a \right )} \coth {\left (a \right )} & \text {for}\: b = 0 \\\tilde {\infty } x & \text {for}\: a = - b x \\- \frac {x \sinh ^{2}{\left (a + b x \right )} \coth {\left (a + b x \right )}}{2} + \frac {x \cosh ^{2}{\left (a + b x \right )} \coth {\left (a + b x \right )}}{2} - \frac {x \cosh {\left (a + b x \right )}}{2 \sinh {\left (a + b x \right )}} + \frac {\log {\left (\sinh {\left (a + b x \right )} \right )}}{b} + \frac {\sinh {\left (a + b x \right )} \cosh {\left (a + b x \right )} \coth {\left (a + b x \right )}}{2 b} & \text {otherwise} \end {cases} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 70 vs. \(2 (25) = 50\).
Time = 0.19 (sec) , antiderivative size = 70, normalized size of antiderivative = 2.59 \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=\frac {b x + a}{b} + \frac {e^{\left (2 \, b x + 2 \, a\right )}}{8 \, b} + \frac {e^{\left (-2 \, b x - 2 \, a\right )}}{8 \, b} + \frac {\log \left (e^{\left (-b x - a\right )} + 1\right )}{b} + \frac {\log \left (e^{\left (-b x - a\right )} - 1\right )}{b} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 63 vs. \(2 (25) = 50\).
Time = 0.27 (sec) , antiderivative size = 63, normalized size of antiderivative = 2.33 \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=-\frac {8 \, b x - {\left (4 \, e^{\left (2 \, b x + 2 \, a\right )} + 1\right )} e^{\left (-2 \, b x - 2 \, a\right )} + 8 \, a - e^{\left (2 \, b x + 2 \, a\right )} - 8 \, \log \left ({\left | e^{\left (2 \, b x + 2 \, a\right )} - 1 \right |}\right )}{8 \, b} \]
[In]
[Out]
Time = 0.08 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.81 \[ \int \cosh ^2(a+b x) \coth (a+b x) \, dx=\frac {\ln \left ({\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1\right )}{b}-x+\frac {{\mathrm {e}}^{-2\,a-2\,b\,x}}{8\,b}+\frac {{\mathrm {e}}^{2\,a+2\,b\,x}}{8\,b} \]
[In]
[Out]