\(\int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx\) [557]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 98 \[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=\frac {2 x}{3 b \text {csch}^{\frac {3}{2}}(a+b x)}-\frac {4 \cosh (a+b x)}{9 b^2 \sqrt {\text {csch}(a+b x)}}-\frac {4 i \sqrt {\text {csch}(a+b x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (i a-\frac {\pi }{2}+i b x\right ),2\right ) \sqrt {i \sinh (a+b x)}}{9 b^2} \]

[Out]

2/3*x/b/csch(b*x+a)^(3/2)-4/9*cosh(b*x+a)/b^2/csch(b*x+a)^(1/2)+4/9*I*(sin(1/2*I*a+1/4*Pi+1/2*I*b*x)^2)^(1/2)/
sin(1/2*I*a+1/4*Pi+1/2*I*b*x)*EllipticF(cos(1/2*I*a+1/4*Pi+1/2*I*b*x),2^(1/2))*csch(b*x+a)^(1/2)*(I*sinh(b*x+a
))^(1/2)/b^2

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5553, 3854, 3856, 2720} \[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=-\frac {4 \cosh (a+b x)}{9 b^2 \sqrt {\text {csch}(a+b x)}}-\frac {4 i \sqrt {i \sinh (a+b x)} \sqrt {\text {csch}(a+b x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (i a+i b x-\frac {\pi }{2}\right ),2\right )}{9 b^2}+\frac {2 x}{3 b \text {csch}^{\frac {3}{2}}(a+b x)} \]

[In]

Int[(x*Cosh[a + b*x])/Sqrt[Csch[a + b*x]],x]

[Out]

(2*x)/(3*b*Csch[a + b*x]^(3/2)) - (4*Cosh[a + b*x])/(9*b^2*Sqrt[Csch[a + b*x]]) - (((4*I)/9)*Sqrt[Csch[a + b*x
]]*EllipticF[(I*a - Pi/2 + I*b*x)/2, 2]*Sqrt[I*Sinh[a + b*x]])/b^2

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 5553

Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]*Csch[(a_.) + (b_.)*(x_)^(n_.)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^(m -
n + 1))*(Csch[a + b*x^n]^(p - 1)/(b*n*(p - 1))), x] + Dist[(m - n + 1)/(b*n*(p - 1)), Int[x^(m - n)*Csch[a + b
*x^n]^(p - 1), x], x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 x}{3 b \text {csch}^{\frac {3}{2}}(a+b x)}-\frac {2 \int \frac {1}{\text {csch}^{\frac {3}{2}}(a+b x)} \, dx}{3 b} \\ & = \frac {2 x}{3 b \text {csch}^{\frac {3}{2}}(a+b x)}-\frac {4 \cosh (a+b x)}{9 b^2 \sqrt {\text {csch}(a+b x)}}+\frac {2 \int \sqrt {\text {csch}(a+b x)} \, dx}{9 b} \\ & = \frac {2 x}{3 b \text {csch}^{\frac {3}{2}}(a+b x)}-\frac {4 \cosh (a+b x)}{9 b^2 \sqrt {\text {csch}(a+b x)}}+\frac {\left (2 \sqrt {\text {csch}(a+b x)} \sqrt {i \sinh (a+b x)}\right ) \int \frac {1}{\sqrt {i \sinh (a+b x)}} \, dx}{9 b} \\ & = \frac {2 x}{3 b \text {csch}^{\frac {3}{2}}(a+b x)}-\frac {4 \cosh (a+b x)}{9 b^2 \sqrt {\text {csch}(a+b x)}}-\frac {4 i \sqrt {\text {csch}(a+b x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (i a-\frac {\pi }{2}+i b x\right ),2\right ) \sqrt {i \sinh (a+b x)}}{9 b^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.68 \[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=\frac {6 b x-4 \coth (a+b x)-\frac {4 i \operatorname {EllipticF}\left (\frac {1}{4} (-2 i a+\pi -2 i b x),2\right )}{(i \sinh (a+b x))^{3/2}}}{9 b^2 \text {csch}^{\frac {3}{2}}(a+b x)} \]

[In]

Integrate[(x*Cosh[a + b*x])/Sqrt[Csch[a + b*x]],x]

[Out]

(6*b*x - 4*Coth[a + b*x] - ((4*I)*EllipticF[((-2*I)*a + Pi - (2*I)*b*x)/4, 2])/(I*Sinh[a + b*x])^(3/2))/(9*b^2
*Csch[a + b*x]^(3/2))

Maple [F]

\[\int \frac {x \cosh \left (b x +a \right )}{\sqrt {\operatorname {csch}\left (b x +a \right )}}d x\]

[In]

int(x*cosh(b*x+a)/csch(b*x+a)^(1/2),x)

[Out]

int(x*cosh(b*x+a)/csch(b*x+a)^(1/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x*cosh(b*x+a)/csch(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

Sympy [F]

\[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=\int \frac {x \cosh {\left (a + b x \right )}}{\sqrt {\operatorname {csch}{\left (a + b x \right )}}}\, dx \]

[In]

integrate(x*cosh(b*x+a)/csch(b*x+a)**(1/2),x)

[Out]

Integral(x*cosh(a + b*x)/sqrt(csch(a + b*x)), x)

Maxima [F]

\[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=\int { \frac {x \cosh \left (b x + a\right )}{\sqrt {\operatorname {csch}\left (b x + a\right )}} \,d x } \]

[In]

integrate(x*cosh(b*x+a)/csch(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x*cosh(b*x + a)/sqrt(csch(b*x + a)), x)

Giac [F]

\[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=\int { \frac {x \cosh \left (b x + a\right )}{\sqrt {\operatorname {csch}\left (b x + a\right )}} \,d x } \]

[In]

integrate(x*cosh(b*x+a)/csch(b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x*cosh(b*x + a)/sqrt(csch(b*x + a)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x \cosh (a+b x)}{\sqrt {\text {csch}(a+b x)}} \, dx=\int \frac {x\,\mathrm {cosh}\left (a+b\,x\right )}{\sqrt {\frac {1}{\mathrm {sinh}\left (a+b\,x\right )}}} \,d x \]

[In]

int((x*cosh(a + b*x))/(1/sinh(a + b*x))^(1/2),x)

[Out]

int((x*cosh(a + b*x))/(1/sinh(a + b*x))^(1/2), x)