\(\int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx\) [805]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 77 \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=\frac {(2 a A-b C) x}{2 a^2}+\frac {C \cosh (x)}{2 a}+\frac {\left (2 a A b+a^2 C-b^2 C\right ) \log (a+b \cosh (x)-b \sinh (x))}{2 a^2 b}+\frac {C \sinh (x)}{2 a} \]

[Out]

1/2*(2*A*a-C*b)*x/a^2+1/2*C*cosh(x)/a+1/2*(2*A*a*b+C*a^2-C*b^2)*ln(a+b*cosh(x)-b*sinh(x))/a^2/b+1/2*C*sinh(x)/
a

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {3210} \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=\frac {\left (a^2 C+2 a A b-b^2 C\right ) \log (a-b \sinh (x)+b \cosh (x))}{2 a^2 b}+\frac {x (2 a A-b C)}{2 a^2}+\frac {C \sinh (x)}{2 a}+\frac {C \cosh (x)}{2 a} \]

[In]

Int[(A + C*Sinh[x])/(a + b*Cosh[x] - b*Sinh[x]),x]

[Out]

((2*a*A - b*C)*x)/(2*a^2) + (C*Cosh[x])/(2*a) + ((2*a*A*b + a^2*C - b^2*C)*Log[a + b*Cosh[x] - b*Sinh[x]])/(2*
a^2*b) + (C*Sinh[x])/(2*a)

Rule 3210

Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x
_)]), x_Symbol] :> Simp[(2*a*A - c*C)*(x/(2*a^2)), x] + (-Simp[C*(Cos[d + e*x]/(2*a*e)), x] + Simp[c*C*(Sin[d
+ e*x]/(2*a*b*e)), x] + Simp[((-a^2)*C + 2*a*c*A + b^2*C)*(Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*
x], x]]/(2*a^2*b*e)), x]) /; FreeQ[{a, b, c, d, e, A, C}, x] && EqQ[b^2 + c^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(2 a A-b C) x}{2 a^2}+\frac {C \cosh (x)}{2 a}+\frac {\left (2 a A b+a^2 C-b^2 C\right ) \log (a+b \cosh (x)-b \sinh (x))}{2 a^2 b}+\frac {C \sinh (x)}{2 a} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.12 \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=\frac {\left (2 a A-\frac {a^2 C}{b}-b C\right ) x+2 a C \cosh (x)+\frac {2 \left (2 a A b+a^2 C-b^2 C\right ) \log \left ((a+b) \cosh \left (\frac {x}{2}\right )+(a-b) \sinh \left (\frac {x}{2}\right )\right )}{b}+2 a C \sinh (x)}{4 a^2} \]

[In]

Integrate[(A + C*Sinh[x])/(a + b*Cosh[x] - b*Sinh[x]),x]

[Out]

((2*a*A - (a^2*C)/b - b*C)*x + 2*a*C*Cosh[x] + (2*(2*a*A*b + a^2*C - b^2*C)*Log[(a + b)*Cosh[x/2] + (a - b)*Si
nh[x/2]])/b + 2*a*C*Sinh[x])/(4*a^2)

Maple [A] (verified)

Time = 0.25 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.81

method result size
risch \(\frac {C \,{\mathrm e}^{x}}{2 a}-\frac {C x}{2 b}+\frac {\ln \left ({\mathrm e}^{x}+\frac {b}{a}\right ) A}{a}+\frac {\ln \left ({\mathrm e}^{x}+\frac {b}{a}\right ) C}{2 b}-\frac {b \ln \left ({\mathrm e}^{x}+\frac {b}{a}\right ) C}{2 a^{2}}\) \(62\)
default \(\frac {\left (2 A a b +C \,a^{2}-C \,b^{2}\right ) \ln \left (a \tanh \left (\frac {x}{2}\right )-b \tanh \left (\frac {x}{2}\right )+a +b \right )}{2 a^{2} b}-\frac {C}{a \left (\tanh \left (\frac {x}{2}\right )-1\right )}+\frac {\left (-2 A a +b C \right ) \ln \left (\tanh \left (\frac {x}{2}\right )-1\right )}{2 a^{2}}-\frac {C \ln \left (1+\tanh \left (\frac {x}{2}\right )\right )}{2 b}\) \(91\)

[In]

int((A+C*sinh(x))/(a+b*cosh(x)-b*sinh(x)),x,method=_RETURNVERBOSE)

[Out]

1/2*C/a*exp(x)-1/2*C*x/b+1/a*ln(exp(x)+1/a*b)*A+1/2/b*ln(exp(x)+1/a*b)*C-1/2/a^2*b*ln(exp(x)+1/a*b)*C

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.77 \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=-\frac {C a^{2} x - C a b \cosh \left (x\right ) - C a b \sinh \left (x\right ) - {\left (C a^{2} + 2 \, A a b - C b^{2}\right )} \log \left (a \cosh \left (x\right ) + a \sinh \left (x\right ) + b\right )}{2 \, a^{2} b} \]

[In]

integrate((A+C*sinh(x))/(a+b*cosh(x)-b*sinh(x)),x, algorithm="fricas")

[Out]

-1/2*(C*a^2*x - C*a*b*cosh(x) - C*a*b*sinh(x) - (C*a^2 + 2*A*a*b - C*b^2)*log(a*cosh(x) + a*sinh(x) + b))/(a^2
*b)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 852 vs. \(2 (66) = 132\).

Time = 2.28 (sec) , antiderivative size = 852, normalized size of antiderivative = 11.06 \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=\text {Too large to display} \]

[In]

integrate((A+C*sinh(x))/(a+b*cosh(x)-b*sinh(x)),x)

[Out]

Piecewise((zoo*(A*x + C*cosh(x)), Eq(a, 0) & Eq(b, 0)), (2*A*x*tanh(x/2)/(2*b*tanh(x/2) - 2*b) - 2*A*x/(2*b*ta
nh(x/2) - 2*b) - 2*A*log(tanh(x/2) + 1)*tanh(x/2)/(2*b*tanh(x/2) - 2*b) + 2*A*log(tanh(x/2) + 1)/(2*b*tanh(x/2
) - 2*b) - C*x*tanh(x/2)/(2*b*tanh(x/2) - 2*b) + C*x/(2*b*tanh(x/2) - 2*b) - 2*C/(2*b*tanh(x/2) - 2*b), Eq(a,
b)), (2*A/(-2*b*sinh(x) + 2*b*cosh(x)) + C*x*sinh(x)/(-2*b*sinh(x) + 2*b*cosh(x)) - C*x*cosh(x)/(-2*b*sinh(x)
+ 2*b*cosh(x)) + C*cosh(x)/(-2*b*sinh(x) + 2*b*cosh(x)), Eq(a, 0)), ((A*x + C*cosh(x))/a, Eq(b, 0)), (2*A*a*b*
x*tanh(x/2)/(2*a**2*b*tanh(x/2) - 2*a**2*b) - 2*A*a*b*x/(2*a**2*b*tanh(x/2) - 2*a**2*b) - 2*A*a*b*log(tanh(x/2
) + 1)*tanh(x/2)/(2*a**2*b*tanh(x/2) - 2*a**2*b) + 2*A*a*b*log(tanh(x/2) + 1)/(2*a**2*b*tanh(x/2) - 2*a**2*b)
+ 2*A*a*b*log(a/(a - b) + b/(a - b) + tanh(x/2))*tanh(x/2)/(2*a**2*b*tanh(x/2) - 2*a**2*b) - 2*A*a*b*log(a/(a
- b) + b/(a - b) + tanh(x/2))/(2*a**2*b*tanh(x/2) - 2*a**2*b) - C*a**2*log(tanh(x/2) + 1)*tanh(x/2)/(2*a**2*b*
tanh(x/2) - 2*a**2*b) + C*a**2*log(tanh(x/2) + 1)/(2*a**2*b*tanh(x/2) - 2*a**2*b) + C*a**2*log(a/(a - b) + b/(
a - b) + tanh(x/2))*tanh(x/2)/(2*a**2*b*tanh(x/2) - 2*a**2*b) - C*a**2*log(a/(a - b) + b/(a - b) + tanh(x/2))/
(2*a**2*b*tanh(x/2) - 2*a**2*b) - 2*C*a*b/(2*a**2*b*tanh(x/2) - 2*a**2*b) - C*b**2*x*tanh(x/2)/(2*a**2*b*tanh(
x/2) - 2*a**2*b) + C*b**2*x/(2*a**2*b*tanh(x/2) - 2*a**2*b) + C*b**2*log(tanh(x/2) + 1)*tanh(x/2)/(2*a**2*b*ta
nh(x/2) - 2*a**2*b) - C*b**2*log(tanh(x/2) + 1)/(2*a**2*b*tanh(x/2) - 2*a**2*b) - C*b**2*log(a/(a - b) + b/(a
- b) + tanh(x/2))*tanh(x/2)/(2*a**2*b*tanh(x/2) - 2*a**2*b) + C*b**2*log(a/(a - b) + b/(a - b) + tanh(x/2))/(2
*a**2*b*tanh(x/2) - 2*a**2*b), True))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.84 \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=A {\left (\frac {x}{a} + \frac {\log \left (b e^{\left (-x\right )} + a\right )}{a}\right )} - \frac {1}{2} \, C {\left (\frac {b x}{a^{2}} - \frac {e^{x}}{a} - \frac {{\left (a^{2} - b^{2}\right )} \log \left (b e^{\left (-x\right )} + a\right )}{a^{2} b}\right )} \]

[In]

integrate((A+C*sinh(x))/(a+b*cosh(x)-b*sinh(x)),x, algorithm="maxima")

[Out]

A*(x/a + log(b*e^(-x) + a)/a) - 1/2*C*(b*x/a^2 - e^x/a - (a^2 - b^2)*log(b*e^(-x) + a)/(a^2*b))

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.64 \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=-\frac {C x}{2 \, b} + \frac {C e^{x}}{2 \, a} + \frac {{\left (C a^{2} + 2 \, A a b - C b^{2}\right )} \log \left ({\left | a e^{x} + b \right |}\right )}{2 \, a^{2} b} \]

[In]

integrate((A+C*sinh(x))/(a+b*cosh(x)-b*sinh(x)),x, algorithm="giac")

[Out]

-1/2*C*x/b + 1/2*C*e^x/a + 1/2*(C*a^2 + 2*A*a*b - C*b^2)*log(abs(a*e^x + b))/(a^2*b)

Mupad [B] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.62 \[ \int \frac {A+C \sinh (x)}{a+b \cosh (x)-b \sinh (x)} \, dx=\frac {C\,{\mathrm {e}}^x}{2\,a}-\frac {C\,x}{2\,b}+\frac {\ln \left (b+a\,{\mathrm {e}}^x\right )\,\left (C\,a^2+2\,A\,a\,b-C\,b^2\right )}{2\,a^2\,b} \]

[In]

int((A + C*sinh(x))/(a + b*cosh(x) - b*sinh(x)),x)

[Out]

(C*exp(x))/(2*a) - (C*x)/(2*b) + (log(b + a*exp(x))*(C*a^2 - C*b^2 + 2*A*a*b))/(2*a^2*b)