\(\int \frac {1}{(\cosh ^2(x)+\sinh ^2(x))^2} \, dx\) [809]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 11, antiderivative size = 11 \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=\frac {\tanh (x)}{1+\tanh ^2(x)} \]

[Out]

tanh(x)/(1+tanh(x)^2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 11, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {391} \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=\frac {\tanh (x)}{\tanh ^2(x)+1} \]

[In]

Int[(Cosh[x]^2 + Sinh[x]^2)^(-2),x]

[Out]

Tanh[x]/(1 + Tanh[x]^2)

Rule 391

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*x*((a + b*x^n)^(p + 1)/a), x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a*d - b*c*(n*(p + 1) + 1), 0]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {1-x^2}{\left (1+x^2\right )^2} \, dx,x,\tanh (x)\right ) \\ & = \frac {\tanh (x)}{1+\tanh ^2(x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 8, normalized size of antiderivative = 0.73 \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=\frac {1}{2} \tanh (2 x) \]

[In]

Integrate[(Cosh[x]^2 + Sinh[x]^2)^(-2),x]

[Out]

Tanh[2*x]/2

Maple [A] (verified)

Time = 30.15 (sec) , antiderivative size = 11, normalized size of antiderivative = 1.00

method result size
risch \(-\frac {1}{1+{\mathrm e}^{4 x}}\) \(11\)
default \(-\frac {2 \left (-\tanh \left (\frac {x}{2}\right )^{3}-\tanh \left (\frac {x}{2}\right )\right )}{\tanh \left (\frac {x}{2}\right )^{4}+6 \tanh \left (\frac {x}{2}\right )^{2}+1}\) \(36\)

[In]

int(1/(cosh(x)^2+sinh(x)^2)^2,x,method=_RETURNVERBOSE)

[Out]

-1/(1+exp(4*x))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 40 vs. \(2 (11) = 22\).

Time = 0.25 (sec) , antiderivative size = 40, normalized size of antiderivative = 3.64 \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=-\frac {1}{\cosh \left (x\right )^{4} + 4 \, \cosh \left (x\right )^{3} \sinh \left (x\right ) + 6 \, \cosh \left (x\right )^{2} \sinh \left (x\right )^{2} + 4 \, \cosh \left (x\right ) \sinh \left (x\right )^{3} + \sinh \left (x\right )^{4} + 1} \]

[In]

integrate(1/(cosh(x)^2+sinh(x)^2)^2,x, algorithm="fricas")

[Out]

-1/(cosh(x)^4 + 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2*sinh(x)^2 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 1)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 48 vs. \(2 (8) = 16\).

Time = 0.68 (sec) , antiderivative size = 48, normalized size of antiderivative = 4.36 \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=\frac {2 \tanh ^{3}{\left (\frac {x}{2} \right )}}{\tanh ^{4}{\left (\frac {x}{2} \right )} + 6 \tanh ^{2}{\left (\frac {x}{2} \right )} + 1} + \frac {2 \tanh {\left (\frac {x}{2} \right )}}{\tanh ^{4}{\left (\frac {x}{2} \right )} + 6 \tanh ^{2}{\left (\frac {x}{2} \right )} + 1} \]

[In]

integrate(1/(cosh(x)**2+sinh(x)**2)**2,x)

[Out]

2*tanh(x/2)**3/(tanh(x/2)**4 + 6*tanh(x/2)**2 + 1) + 2*tanh(x/2)/(tanh(x/2)**4 + 6*tanh(x/2)**2 + 1)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 8, normalized size of antiderivative = 0.73 \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=\frac {1}{e^{\left (-4 \, x\right )} + 1} \]

[In]

integrate(1/(cosh(x)^2+sinh(x)^2)^2,x, algorithm="maxima")

[Out]

1/(e^(-4*x) + 1)

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.91 \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=-\frac {1}{e^{\left (4 \, x\right )} + 1} \]

[In]

integrate(1/(cosh(x)^2+sinh(x)^2)^2,x, algorithm="giac")

[Out]

-1/(e^(4*x) + 1)

Mupad [B] (verification not implemented)

Time = 2.26 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.91 \[ \int \frac {1}{\left (\cosh ^2(x)+\sinh ^2(x)\right )^2} \, dx=-\frac {1}{{\mathrm {e}}^{4\,x}+1} \]

[In]

int(1/(cosh(x)^2 + sinh(x)^2)^2,x)

[Out]

-1/(exp(4*x) + 1)