\(\int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx\) [103]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 389 \[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=-\frac {15 b^2 c (c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}}{4 d^2}+\frac {5 b c \sqrt {1+(c+d x)^2} (a+b \text {arcsinh}(c+d x))^{3/2}}{2 d^2}-\frac {c (c+d x) (a+b \text {arcsinh}(c+d x))^{5/2}}{d^2}+\frac {15 b^2 \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))}{64 d^2}+\frac {(a+b \text {arcsinh}(c+d x))^{5/2} \cosh (2 \text {arcsinh}(c+d x))}{4 d^2}-\frac {15 b^{5/2} c e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 d^2}-\frac {15 b^{5/2} e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{256 d^2}+\frac {15 b^{5/2} c e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 d^2}-\frac {15 b^{5/2} e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{256 d^2}-\frac {5 b (a+b \text {arcsinh}(c+d x))^{3/2} \sinh (2 \text {arcsinh}(c+d x))}{16 d^2} \]

[Out]

-c*(d*x+c)*(a+b*arcsinh(d*x+c))^(5/2)/d^2+1/4*(a+b*arcsinh(d*x+c))^(5/2)*cosh(2*arcsinh(d*x+c))/d^2-5/16*b*(a+
b*arcsinh(d*x+c))^(3/2)*sinh(2*arcsinh(d*x+c))/d^2-15/512*b^(5/2)*exp(2*a/b)*erf(2^(1/2)*(a+b*arcsinh(d*x+c))^
(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d^2-15/512*b^(5/2)*erfi(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi
^(1/2)/d^2/exp(2*a/b)-15/16*b^(5/2)*c*exp(a/b)*erf((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d^2+15/16*b^(5
/2)*c*erfi((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d^2/exp(a/b)+5/2*b*c*(a+b*arcsinh(d*x+c))^(3/2)*(1+(d*
x+c)^2)^(1/2)/d^2-15/4*b^2*c*(d*x+c)*(a+b*arcsinh(d*x+c))^(1/2)/d^2+15/64*b^2*cosh(2*arcsinh(d*x+c))*(a+b*arcs
inh(d*x+c))^(1/2)/d^2

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 389, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {5859, 5830, 6873, 6874, 5433, 5432, 5406, 2236, 2235, 5407} \[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=-\frac {15 \sqrt {\pi } b^{5/2} c e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 d^2}-\frac {15 \sqrt {\frac {\pi }{2}} b^{5/2} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{256 d^2}+\frac {15 \sqrt {\pi } b^{5/2} c e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 d^2}-\frac {15 \sqrt {\frac {\pi }{2}} b^{5/2} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{256 d^2}-\frac {15 b^2 c (c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}}{4 d^2}+\frac {15 b^2 \cosh (2 \text {arcsinh}(c+d x)) \sqrt {a+b \text {arcsinh}(c+d x)}}{64 d^2}+\frac {5 b c \sqrt {(c+d x)^2+1} (a+b \text {arcsinh}(c+d x))^{3/2}}{2 d^2}-\frac {c (c+d x) (a+b \text {arcsinh}(c+d x))^{5/2}}{d^2}-\frac {5 b \sinh (2 \text {arcsinh}(c+d x)) (a+b \text {arcsinh}(c+d x))^{3/2}}{16 d^2}+\frac {\cosh (2 \text {arcsinh}(c+d x)) (a+b \text {arcsinh}(c+d x))^{5/2}}{4 d^2} \]

[In]

Int[x*(a + b*ArcSinh[c + d*x])^(5/2),x]

[Out]

(-15*b^2*c*(c + d*x)*Sqrt[a + b*ArcSinh[c + d*x]])/(4*d^2) + (5*b*c*Sqrt[1 + (c + d*x)^2]*(a + b*ArcSinh[c + d
*x])^(3/2))/(2*d^2) - (c*(c + d*x)*(a + b*ArcSinh[c + d*x])^(5/2))/d^2 + (15*b^2*Sqrt[a + b*ArcSinh[c + d*x]]*
Cosh[2*ArcSinh[c + d*x]])/(64*d^2) + ((a + b*ArcSinh[c + d*x])^(5/2)*Cosh[2*ArcSinh[c + d*x]])/(4*d^2) - (15*b
^(5/2)*c*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(16*d^2) - (15*b^(5/2)*E^((2*a)/b)*Sqrt[P
i/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(256*d^2) + (15*b^(5/2)*c*Sqrt[Pi]*Erfi[Sqrt[a + b*A
rcSinh[c + d*x]]/Sqrt[b]])/(16*d^2*E^(a/b)) - (15*b^(5/2)*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]
])/Sqrt[b]])/(256*d^2*E^((2*a)/b)) - (5*b*(a + b*ArcSinh[c + d*x])^(3/2)*Sinh[2*ArcSinh[c + d*x]])/(16*d^2)

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 5406

Int[Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Dist[1/2, Int[E^(c + d*x^n), x], x] - Dist[1/2, Int[E^(-c - d*
x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]

Rule 5407

Int[Cosh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Dist[1/2, Int[E^(c + d*x^n), x], x] + Dist[1/2, Int[E^(-c - d*
x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]

Rule 5432

Int[((e_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(Cosh[c +
d*x^n]/(d*n)), x] - Dist[e^n*((m - n + 1)/(d*n)), Int[(e*x)^(m - n)*Cosh[c + d*x^n], x], x] /; FreeQ[{c, d, e}
, x] && IGtQ[n, 0] && LtQ[0, n, m + 1]

Rule 5433

Int[Cosh[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(Sinh[c +
d*x^n]/(d*n)), x] - Dist[e^n*((m - n + 1)/(d*n)), Int[(e*x)^(m - n)*Sinh[c + d*x^n], x], x] /; FreeQ[{c, d, e}
, x] && IGtQ[n, 0] && LtQ[0, n, m + 1]

Rule 5830

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst
[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[m, 0]

Rule 5859

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \left (-\frac {c}{d}+\frac {x}{d}\right ) (a+b \text {arcsinh}(x))^{5/2} \, dx,x,c+d x\right )}{d} \\ & = \frac {\text {Subst}\left (\int (a+b x)^{5/2} \cosh (x) \left (-\frac {c}{d}+\frac {\sinh (x)}{d}\right ) \, dx,x,\text {arcsinh}(c+d x)\right )}{d} \\ & = -\frac {2 \text {Subst}\left (\int x^6 \cosh \left (\frac {a-x^2}{b}\right ) \left (c+\sinh \left (\frac {a-x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b d^2} \\ & = -\frac {2 \text {Subst}\left (\int x^6 \cosh \left (\frac {a}{b}-\frac {x^2}{b}\right ) \left (c+\sinh \left (\frac {a-x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b d^2} \\ & = -\frac {2 \text {Subst}\left (\int \left (c x^6 \cosh \left (\frac {a}{b}-\frac {x^2}{b}\right )+\frac {1}{2} x^6 \sinh \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b d^2} \\ & = -\frac {\text {Subst}\left (\int x^6 \sinh \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b d^2}-\frac {(2 c) \text {Subst}\left (\int x^6 \cosh \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b d^2} \\ & = -\frac {c (c+d x) (a+b \text {arcsinh}(c+d x))^{5/2}}{d^2}+\frac {(a+b \text {arcsinh}(c+d x))^{5/2} \cosh (2 \text {arcsinh}(c+d x))}{4 d^2}-\frac {5 \text {Subst}\left (\int x^4 \cosh \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{4 d^2}-\frac {(5 c) \text {Subst}\left (\int x^4 \sinh \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{d^2} \\ & = \frac {5 b c \sqrt {1+(c+d x)^2} (a+b \text {arcsinh}(c+d x))^{3/2}}{2 d^2}-\frac {c (c+d x) (a+b \text {arcsinh}(c+d x))^{5/2}}{d^2}+\frac {(a+b \text {arcsinh}(c+d x))^{5/2} \cosh (2 \text {arcsinh}(c+d x))}{4 d^2}-\frac {5 b (a+b \text {arcsinh}(c+d x))^{3/2} \sinh (2 \text {arcsinh}(c+d x))}{16 d^2}-\frac {(15 b) \text {Subst}\left (\int x^2 \sinh \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{16 d^2}-\frac {(15 b c) \text {Subst}\left (\int x^2 \cosh \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{2 d^2} \\ & = -\frac {15 b^2 c (c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}}{4 d^2}+\frac {5 b c \sqrt {1+(c+d x)^2} (a+b \text {arcsinh}(c+d x))^{3/2}}{2 d^2}-\frac {c (c+d x) (a+b \text {arcsinh}(c+d x))^{5/2}}{d^2}+\frac {15 b^2 \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))}{64 d^2}+\frac {(a+b \text {arcsinh}(c+d x))^{5/2} \cosh (2 \text {arcsinh}(c+d x))}{4 d^2}-\frac {5 b (a+b \text {arcsinh}(c+d x))^{3/2} \sinh (2 \text {arcsinh}(c+d x))}{16 d^2}-\frac {\left (15 b^2\right ) \text {Subst}\left (\int \cosh \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{64 d^2}-\frac {\left (15 b^2 c\right ) \text {Subst}\left (\int \sinh \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{4 d^2} \\ & = -\frac {15 b^2 c (c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}}{4 d^2}+\frac {5 b c \sqrt {1+(c+d x)^2} (a+b \text {arcsinh}(c+d x))^{3/2}}{2 d^2}-\frac {c (c+d x) (a+b \text {arcsinh}(c+d x))^{5/2}}{d^2}+\frac {15 b^2 \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))}{64 d^2}+\frac {(a+b \text {arcsinh}(c+d x))^{5/2} \cosh (2 \text {arcsinh}(c+d x))}{4 d^2}-\frac {5 b (a+b \text {arcsinh}(c+d x))^{3/2} \sinh (2 \text {arcsinh}(c+d x))}{16 d^2}-\frac {\left (15 b^2\right ) \text {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{128 d^2}-\frac {\left (15 b^2\right ) \text {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{128 d^2}-\frac {\left (15 b^2 c\right ) \text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{8 d^2}+\frac {\left (15 b^2 c\right ) \text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{8 d^2} \\ & = -\frac {15 b^2 c (c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}}{4 d^2}+\frac {5 b c \sqrt {1+(c+d x)^2} (a+b \text {arcsinh}(c+d x))^{3/2}}{2 d^2}-\frac {c (c+d x) (a+b \text {arcsinh}(c+d x))^{5/2}}{d^2}+\frac {15 b^2 \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))}{64 d^2}+\frac {(a+b \text {arcsinh}(c+d x))^{5/2} \cosh (2 \text {arcsinh}(c+d x))}{4 d^2}-\frac {15 b^{5/2} c e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 d^2}-\frac {15 b^{5/2} e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{256 d^2}+\frac {15 b^{5/2} c e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 d^2}-\frac {15 b^{5/2} e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{256 d^2}-\frac {5 b (a+b \text {arcsinh}(c+d x))^{3/2} \sinh (2 \text {arcsinh}(c+d x))}{16 d^2} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(939\) vs. \(2(389)=778\).

Time = 8.10 (sec) , antiderivative size = 939, normalized size of antiderivative = 2.41 \[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=\frac {-1920 b^2 c^2 \sqrt {a+b \text {arcsinh}(c+d x)}-1920 b^2 c d x \sqrt {a+b \text {arcsinh}(c+d x)}+1280 a b c \sqrt {1+c^2+2 c d x+d^2 x^2} \sqrt {a+b \text {arcsinh}(c+d x)}-1024 a b c^2 \text {arcsinh}(c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}-1024 a b c d x \text {arcsinh}(c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}+1280 b^2 c \sqrt {1+c^2+2 c d x+d^2 x^2} \text {arcsinh}(c+d x) \sqrt {a+b \text {arcsinh}(c+d x)}-512 b^2 c^2 \text {arcsinh}(c+d x)^2 \sqrt {a+b \text {arcsinh}(c+d x)}-512 b^2 c d x \text {arcsinh}(c+d x)^2 \sqrt {a+b \text {arcsinh}(c+d x)}+128 a^2 \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))+120 b^2 \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))+256 a b \text {arcsinh}(c+d x) \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))+128 b^2 \text {arcsinh}(c+d x)^2 \sqrt {a+b \text {arcsinh}(c+d x)} \cosh (2 \text {arcsinh}(c+d x))-128 a^2 \sqrt {b} c \sqrt {\pi } \cosh \left (\frac {a}{b}\right ) \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+480 b^{5/2} c \sqrt {\pi } \cosh \left (\frac {a}{b}\right ) \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-15 b^{5/2} \sqrt {2 \pi } \cosh \left (\frac {2 a}{b}\right ) \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {256 a^2 b c e^{a/b} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {3}{2},\frac {a}{b}+\text {arcsinh}(c+d x)\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {256 a^2 b c e^{-\frac {a}{b}} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {3}{2},-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}+128 a^2 \sqrt {b} c \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \sinh \left (\frac {a}{b}\right )-480 b^{5/2} c \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \sinh \left (\frac {a}{b}\right )+32 \sqrt {b} \left (4 a^2-15 b^2\right ) c \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \left (\cosh \left (\frac {a}{b}\right )+\sinh \left (\frac {a}{b}\right )\right )+15 b^{5/2} \sqrt {2 \pi } \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \sinh \left (\frac {2 a}{b}\right )-15 b^{5/2} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \left (\cosh \left (\frac {2 a}{b}\right )+\sinh \left (\frac {2 a}{b}\right )\right )-160 a b \sqrt {a+b \text {arcsinh}(c+d x)} \sinh (2 \text {arcsinh}(c+d x))-160 b^2 \text {arcsinh}(c+d x) \sqrt {a+b \text {arcsinh}(c+d x)} \sinh (2 \text {arcsinh}(c+d x))}{512 d^2} \]

[In]

Integrate[x*(a + b*ArcSinh[c + d*x])^(5/2),x]

[Out]

(-1920*b^2*c^2*Sqrt[a + b*ArcSinh[c + d*x]] - 1920*b^2*c*d*x*Sqrt[a + b*ArcSinh[c + d*x]] + 1280*a*b*c*Sqrt[1
+ c^2 + 2*c*d*x + d^2*x^2]*Sqrt[a + b*ArcSinh[c + d*x]] - 1024*a*b*c^2*ArcSinh[c + d*x]*Sqrt[a + b*ArcSinh[c +
 d*x]] - 1024*a*b*c*d*x*ArcSinh[c + d*x]*Sqrt[a + b*ArcSinh[c + d*x]] + 1280*b^2*c*Sqrt[1 + c^2 + 2*c*d*x + d^
2*x^2]*ArcSinh[c + d*x]*Sqrt[a + b*ArcSinh[c + d*x]] - 512*b^2*c^2*ArcSinh[c + d*x]^2*Sqrt[a + b*ArcSinh[c + d
*x]] - 512*b^2*c*d*x*ArcSinh[c + d*x]^2*Sqrt[a + b*ArcSinh[c + d*x]] + 128*a^2*Sqrt[a + b*ArcSinh[c + d*x]]*Co
sh[2*ArcSinh[c + d*x]] + 120*b^2*Sqrt[a + b*ArcSinh[c + d*x]]*Cosh[2*ArcSinh[c + d*x]] + 256*a*b*ArcSinh[c + d
*x]*Sqrt[a + b*ArcSinh[c + d*x]]*Cosh[2*ArcSinh[c + d*x]] + 128*b^2*ArcSinh[c + d*x]^2*Sqrt[a + b*ArcSinh[c +
d*x]]*Cosh[2*ArcSinh[c + d*x]] - 128*a^2*Sqrt[b]*c*Sqrt[Pi]*Cosh[a/b]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b
]] + 480*b^(5/2)*c*Sqrt[Pi]*Cosh[a/b]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]] - 15*b^(5/2)*Sqrt[2*Pi]*Cosh[
(2*a)/b]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]] + (256*a^2*b*c*E^(a/b)*Sqrt[a/b + ArcSinh[c + d*
x]]*Gamma[3/2, a/b + ArcSinh[c + d*x]])/Sqrt[a + b*ArcSinh[c + d*x]] + (256*a^2*b*c*Sqrt[-((a + b*ArcSinh[c +
d*x])/b)]*Gamma[3/2, -((a + b*ArcSinh[c + d*x])/b)])/(E^(a/b)*Sqrt[a + b*ArcSinh[c + d*x]]) + 128*a^2*Sqrt[b]*
c*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]]*Sinh[a/b] - 480*b^(5/2)*c*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSi
nh[c + d*x]]/Sqrt[b]]*Sinh[a/b] + 32*Sqrt[b]*(4*a^2 - 15*b^2)*c*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt
[b]]*(Cosh[a/b] + Sinh[a/b]) + 15*b^(5/2)*Sqrt[2*Pi]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*Sinh
[(2*a)/b] - 15*b^(5/2)*Sqrt[2*Pi]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*(Cosh[(2*a)/b] + Sinh[(2
*a)/b]) - 160*a*b*Sqrt[a + b*ArcSinh[c + d*x]]*Sinh[2*ArcSinh[c + d*x]] - 160*b^2*ArcSinh[c + d*x]*Sqrt[a + b*
ArcSinh[c + d*x]]*Sinh[2*ArcSinh[c + d*x]])/(512*d^2)

Maple [F]

\[\int x \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{\frac {5}{2}}d x\]

[In]

int(x*(a+b*arcsinh(d*x+c))^(5/2),x)

[Out]

int(x*(a+b*arcsinh(d*x+c))^(5/2),x)

Fricas [F(-2)]

Exception generated. \[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x*(a+b*arcsinh(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=\int x \left (a + b \operatorname {asinh}{\left (c + d x \right )}\right )^{\frac {5}{2}}\, dx \]

[In]

integrate(x*(a+b*asinh(d*x+c))**(5/2),x)

[Out]

Integral(x*(a + b*asinh(c + d*x))**(5/2), x)

Maxima [F]

\[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=\int { {\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {5}{2}} x \,d x } \]

[In]

integrate(x*(a+b*arcsinh(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(d*x + c) + a)^(5/2)*x, x)

Giac [F]

\[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=\int { {\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {5}{2}} x \,d x } \]

[In]

integrate(x*(a+b*arcsinh(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(d*x + c) + a)^(5/2)*x, x)

Mupad [F(-1)]

Timed out. \[ \int x (a+b \text {arcsinh}(c+d x))^{5/2} \, dx=\int x\,{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{5/2} \,d x \]

[In]

int(x*(a + b*asinh(c + d*x))^(5/2),x)

[Out]

int(x*(a + b*asinh(c + d*x))^(5/2), x)