\(\int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx\) [112]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 445 \[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {4 c e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{\frac {2 a}{b}} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {4 c e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{-\frac {2 a}{b}} \sqrt {2 \pi } \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2} \]

[Out]

-4/15/b^2/d^2/(a+b*arcsinh(d*x+c))^(3/2)+4/15*c*(d*x+c)/b^2/d^2/(a+b*arcsinh(d*x+c))^(3/2)-8/15*(d*x+c)^2/b^2/
d^2/(a+b*arcsinh(d*x+c))^(3/2)+4/15*c*exp(a/b)*erf((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(7/2)/d^2-4/
15*c*erfi((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(7/2)/d^2/exp(a/b)+8/15*exp(2*a/b)*erf(2^(1/2)*(a+b*a
rcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(7/2)/d^2+8/15*erfi(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2
))*2^(1/2)*Pi^(1/2)/b^(7/2)/d^2/exp(2*a/b)+2/5*c*(1+(d*x+c)^2)^(1/2)/b/d^2/(a+b*arcsinh(d*x+c))^(5/2)-2/5*(d*x
+c)*(1+(d*x+c)^2)^(1/2)/b/d^2/(a+b*arcsinh(d*x+c))^(5/2)+8/15*c*(1+(d*x+c)^2)^(1/2)/b^3/d^2/(a+b*arcsinh(d*x+c
))^(1/2)-32/15*(d*x+c)*(1+(d*x+c)^2)^(1/2)/b^3/d^2/(a+b*arcsinh(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 445, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.812, Rules used = {5859, 5829, 5773, 5818, 5819, 3389, 2211, 2236, 2235, 5779, 5778, 3388, 5783} \[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\frac {4 \sqrt {\pi } c e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 \sqrt {2 \pi } e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {4 \sqrt {\pi } c e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 \sqrt {2 \pi } e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {32 \sqrt {(c+d x)^2+1} (c+d x)}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {8 c \sqrt {(c+d x)^2+1}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 c \sqrt {(c+d x)^2+1}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}} \]

[In]

Int[x/(a + b*ArcSinh[c + d*x])^(7/2),x]

[Out]

(2*c*Sqrt[1 + (c + d*x)^2])/(5*b*d^2*(a + b*ArcSinh[c + d*x])^(5/2)) - (2*(c + d*x)*Sqrt[1 + (c + d*x)^2])/(5*
b*d^2*(a + b*ArcSinh[c + d*x])^(5/2)) - 4/(15*b^2*d^2*(a + b*ArcSinh[c + d*x])^(3/2)) + (4*c*(c + d*x))/(15*b^
2*d^2*(a + b*ArcSinh[c + d*x])^(3/2)) - (8*(c + d*x)^2)/(15*b^2*d^2*(a + b*ArcSinh[c + d*x])^(3/2)) + (8*c*Sqr
t[1 + (c + d*x)^2])/(15*b^3*d^2*Sqrt[a + b*ArcSinh[c + d*x]]) - (32*(c + d*x)*Sqrt[1 + (c + d*x)^2])/(15*b^3*d
^2*Sqrt[a + b*ArcSinh[c + d*x]]) + (4*c*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2
)*d^2) + (8*E^((2*a)/b)*Sqrt[2*Pi]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(15*b^(7/2)*d^2) - (4*
c*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d^2*E^(a/b)) + (8*Sqrt[2*Pi]*Erfi[(Sqrt[2]*
Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(15*b^(7/2)*d^2*E^((2*a)/b))

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5773

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1
)/(b*c*(n + 1))), x] - Dist[c/(b*(n + 1)), Int[x*((a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2]), x], x] /; F
reeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5778

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSi
nh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[1/(b^2*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[x^(n + 1), Si
nh[-a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c}
, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSi
nh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Dist[c*((m + 1)/(b*(n + 1))), Int[x^(m + 1)*((a + b*ArcSinh[c*x])^(n +
 1)/Sqrt[1 + c^2*x^2]), x], x] - Dist[m/(b*c*(n + 1)), Int[x^(m - 1)*((a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^
2*x^2]), x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5818

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] - Dist[f*(m/
(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]], Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x], x]
 /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[n, -1]

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rule 5829

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1]

Rule 5859

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {-\frac {c}{d}+\frac {x}{d}}{(a+b \text {arcsinh}(x))^{7/2}} \, dx,x,c+d x\right )}{d} \\ & = \frac {\text {Subst}\left (\int \left (-\frac {c}{d (a+b \text {arcsinh}(x))^{7/2}}+\frac {x}{d (a+b \text {arcsinh}(x))^{7/2}}\right ) \, dx,x,c+d x\right )}{d} \\ & = \frac {\text {Subst}\left (\int \frac {x}{(a+b \text {arcsinh}(x))^{7/2}} \, dx,x,c+d x\right )}{d^2}-\frac {c \text {Subst}\left (\int \frac {1}{(a+b \text {arcsinh}(x))^{7/2}} \, dx,x,c+d x\right )}{d^2} \\ & = \frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} (a+b \text {arcsinh}(x))^{5/2}} \, dx,x,c+d x\right )}{5 b d^2}+\frac {4 \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} (a+b \text {arcsinh}(x))^{5/2}} \, dx,x,c+d x\right )}{5 b d^2}-\frac {(2 c) \text {Subst}\left (\int \frac {x}{\sqrt {1+x^2} (a+b \text {arcsinh}(x))^{5/2}} \, dx,x,c+d x\right )}{5 b d^2} \\ & = \frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {16 \text {Subst}\left (\int \frac {x}{(a+b \text {arcsinh}(x))^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d^2}-\frac {(4 c) \text {Subst}\left (\int \frac {1}{(a+b \text {arcsinh}(x))^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d^2} \\ & = \frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {32 \text {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{15 b^4 d^2}-\frac {(8 c) \text {Subst}\left (\int \frac {x}{\sqrt {1+x^2} \sqrt {a+b \text {arcsinh}(x)}} \, dx,x,c+d x\right )}{15 b^3 d^2} \\ & = \frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {16 \text {Subst}\left (\int \frac {e^{-i \left (\frac {2 i a}{b}-\frac {2 i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{15 b^4 d^2}+\frac {16 \text {Subst}\left (\int \frac {e^{i \left (\frac {2 i a}{b}-\frac {2 i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{15 b^4 d^2}+\frac {(8 c) \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{15 b^4 d^2} \\ & = \frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {32 \text {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{15 b^4 d^2}+\frac {32 \text {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{15 b^4 d^2}+\frac {(4 c) \text {Subst}\left (\int \frac {e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{15 b^4 d^2}-\frac {(4 c) \text {Subst}\left (\int \frac {e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{15 b^4 d^2} \\ & = \frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {8 e^{\frac {2 a}{b}} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{-\frac {2 a}{b}} \sqrt {2 \pi } \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {(8 c) \text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{15 b^4 d^2}-\frac {(8 c) \text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{15 b^4 d^2} \\ & = \frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {4 c e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{\frac {2 a}{b}} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {4 c e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{-\frac {2 a}{b}} \sqrt {2 \pi } \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.12 (sec) , antiderivative size = 703, normalized size of antiderivative = 1.58 \[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\frac {4 a b^{3/2} c (c+d x)+8 a^2 \sqrt {b} c \sqrt {1+(c+d x)^2}+6 b^{5/2} c \sqrt {1+(c+d x)^2}+4 b^{5/2} c (c+d x) \text {arcsinh}(c+d x)+16 a b^{3/2} c \sqrt {1+(c+d x)^2} \text {arcsinh}(c+d x)+8 b^{5/2} c \sqrt {1+(c+d x)^2} \text {arcsinh}(c+d x)^2-4 a b^{3/2} \cosh (2 \text {arcsinh}(c+d x))-4 b^{5/2} \text {arcsinh}(c+d x) \cosh (2 \text {arcsinh}(c+d x))+4 c \sqrt {\pi } (a+b \text {arcsinh}(c+d x))^{5/2} \cosh \left (\frac {a}{b}\right ) \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+8 \sqrt {2 \pi } (a+b \text {arcsinh}(c+d x))^{5/2} \cosh \left (\frac {2 a}{b}\right ) \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-4 c \sqrt {\pi } (a+b \text {arcsinh}(c+d x))^{5/2} \cosh \left (\frac {a}{b}\right ) \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+8 \sqrt {2 \pi } (a+b \text {arcsinh}(c+d x))^{5/2} \cosh \left (\frac {2 a}{b}\right ) \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+4 c \sqrt {\pi } (a+b \text {arcsinh}(c+d x))^{5/2} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \sinh \left (\frac {a}{b}\right )+4 c \sqrt {\pi } (a+b \text {arcsinh}(c+d x))^{5/2} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \sinh \left (\frac {a}{b}\right )+8 \sqrt {2 \pi } (a+b \text {arcsinh}(c+d x))^{5/2} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \sinh \left (\frac {2 a}{b}\right )-8 \sqrt {2 \pi } (a+b \text {arcsinh}(c+d x))^{5/2} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right ) \sinh \left (\frac {2 a}{b}\right )-16 a^2 \sqrt {b} \sinh (2 \text {arcsinh}(c+d x))-3 b^{5/2} \sinh (2 \text {arcsinh}(c+d x))-32 a b^{3/2} \text {arcsinh}(c+d x) \sinh (2 \text {arcsinh}(c+d x))-16 b^{5/2} \text {arcsinh}(c+d x)^2 \sinh (2 \text {arcsinh}(c+d x))}{15 b^{7/2} d^2 (a+b \text {arcsinh}(c+d x))^{5/2}} \]

[In]

Integrate[x/(a + b*ArcSinh[c + d*x])^(7/2),x]

[Out]

(4*a*b^(3/2)*c*(c + d*x) + 8*a^2*Sqrt[b]*c*Sqrt[1 + (c + d*x)^2] + 6*b^(5/2)*c*Sqrt[1 + (c + d*x)^2] + 4*b^(5/
2)*c*(c + d*x)*ArcSinh[c + d*x] + 16*a*b^(3/2)*c*Sqrt[1 + (c + d*x)^2]*ArcSinh[c + d*x] + 8*b^(5/2)*c*Sqrt[1 +
 (c + d*x)^2]*ArcSinh[c + d*x]^2 - 4*a*b^(3/2)*Cosh[2*ArcSinh[c + d*x]] - 4*b^(5/2)*ArcSinh[c + d*x]*Cosh[2*Ar
cSinh[c + d*x]] + 4*c*Sqrt[Pi]*(a + b*ArcSinh[c + d*x])^(5/2)*Cosh[a/b]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[
b]] + 8*Sqrt[2*Pi]*(a + b*ArcSinh[c + d*x])^(5/2)*Cosh[(2*a)/b]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqr
t[b]] - 4*c*Sqrt[Pi]*(a + b*ArcSinh[c + d*x])^(5/2)*Cosh[a/b]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]] + 8*S
qrt[2*Pi]*(a + b*ArcSinh[c + d*x])^(5/2)*Cosh[(2*a)/b]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]] +
4*c*Sqrt[Pi]*(a + b*ArcSinh[c + d*x])^(5/2)*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]]*Sinh[a/b] + 4*c*Sqrt[Pi]
*(a + b*ArcSinh[c + d*x])^(5/2)*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]]*Sinh[a/b] + 8*Sqrt[2*Pi]*(a + b*Arc
Sinh[c + d*x])^(5/2)*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*Sinh[(2*a)/b] - 8*Sqrt[2*Pi]*(a + b*A
rcSinh[c + d*x])^(5/2)*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*Sinh[(2*a)/b] - 16*a^2*Sqrt[b]*Sin
h[2*ArcSinh[c + d*x]] - 3*b^(5/2)*Sinh[2*ArcSinh[c + d*x]] - 32*a*b^(3/2)*ArcSinh[c + d*x]*Sinh[2*ArcSinh[c +
d*x]] - 16*b^(5/2)*ArcSinh[c + d*x]^2*Sinh[2*ArcSinh[c + d*x]])/(15*b^(7/2)*d^2*(a + b*ArcSinh[c + d*x])^(5/2)
)

Maple [F]

\[\int \frac {x}{\left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{\frac {7}{2}}}d x\]

[In]

int(x/(a+b*arcsinh(d*x+c))^(7/2),x)

[Out]

int(x/(a+b*arcsinh(d*x+c))^(7/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int \frac {x}{\left (a + b \operatorname {asinh}{\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx \]

[In]

integrate(x/(a+b*asinh(d*x+c))**(7/2),x)

[Out]

Integral(x/(a + b*asinh(c + d*x))**(7/2), x)

Maxima [F]

\[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int { \frac {x}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate(x/(b*arcsinh(d*x + c) + a)^(7/2), x)

Giac [F]

\[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int { \frac {x}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(x/(b*arcsinh(d*x + c) + a)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int \frac {x}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{7/2}} \,d x \]

[In]

int(x/(a + b*asinh(c + d*x))^(7/2),x)

[Out]

int(x/(a + b*asinh(c + d*x))^(7/2), x)