\(\int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx\) [133]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 100 \[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=-\frac {(a+b \text {arcsinh}(c+d x))^2}{d e^2 (c+d x)}-\frac {4 b (a+b \text {arcsinh}(c+d x)) \text {arctanh}\left (e^{\text {arcsinh}(c+d x)}\right )}{d e^2}-\frac {2 b^2 \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c+d x)}\right )}{d e^2}+\frac {2 b^2 \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c+d x)}\right )}{d e^2} \]

[Out]

-(a+b*arcsinh(d*x+c))^2/d/e^2/(d*x+c)-4*b*(a+b*arcsinh(d*x+c))*arctanh(d*x+c+(1+(d*x+c)^2)^(1/2))/d/e^2-2*b^2*
polylog(2,-d*x-c-(1+(d*x+c)^2)^(1/2))/d/e^2+2*b^2*polylog(2,d*x+c+(1+(d*x+c)^2)^(1/2))/d/e^2

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {5859, 12, 5776, 5816, 4267, 2317, 2438} \[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=-\frac {4 b \text {arctanh}\left (e^{\text {arcsinh}(c+d x)}\right ) (a+b \text {arcsinh}(c+d x))}{d e^2}-\frac {(a+b \text {arcsinh}(c+d x))^2}{d e^2 (c+d x)}-\frac {2 b^2 \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c+d x)}\right )}{d e^2}+\frac {2 b^2 \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c+d x)}\right )}{d e^2} \]

[In]

Int[(a + b*ArcSinh[c + d*x])^2/(c*e + d*e*x)^2,x]

[Out]

-((a + b*ArcSinh[c + d*x])^2/(d*e^2*(c + d*x))) - (4*b*(a + b*ArcSinh[c + d*x])*ArcTanh[E^ArcSinh[c + d*x]])/(
d*e^2) - (2*b^2*PolyLog[2, -E^ArcSinh[c + d*x]])/(d*e^2) + (2*b^2*PolyLog[2, E^ArcSinh[c + d*x]])/(d*e^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4267

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(Ar
cTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] + (-Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*
fz*x)], x], x] + Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5776

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcS
inh[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[
1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5816

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[(1/c^(m
 + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]], Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; F
reeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]

Rule 5859

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {(a+b \text {arcsinh}(x))^2}{e^2 x^2} \, dx,x,c+d x\right )}{d} \\ & = \frac {\text {Subst}\left (\int \frac {(a+b \text {arcsinh}(x))^2}{x^2} \, dx,x,c+d x\right )}{d e^2} \\ & = -\frac {(a+b \text {arcsinh}(c+d x))^2}{d e^2 (c+d x)}+\frac {(2 b) \text {Subst}\left (\int \frac {a+b \text {arcsinh}(x)}{x \sqrt {1+x^2}} \, dx,x,c+d x\right )}{d e^2} \\ & = -\frac {(a+b \text {arcsinh}(c+d x))^2}{d e^2 (c+d x)}+\frac {(2 b) \text {Subst}(\int (a+b x) \text {csch}(x) \, dx,x,\text {arcsinh}(c+d x))}{d e^2} \\ & = -\frac {(a+b \text {arcsinh}(c+d x))^2}{d e^2 (c+d x)}-\frac {4 b (a+b \text {arcsinh}(c+d x)) \text {arctanh}\left (e^{\text {arcsinh}(c+d x)}\right )}{d e^2}-\frac {\left (2 b^2\right ) \text {Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\text {arcsinh}(c+d x)\right )}{d e^2}+\frac {\left (2 b^2\right ) \text {Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\text {arcsinh}(c+d x)\right )}{d e^2} \\ & = -\frac {(a+b \text {arcsinh}(c+d x))^2}{d e^2 (c+d x)}-\frac {4 b (a+b \text {arcsinh}(c+d x)) \text {arctanh}\left (e^{\text {arcsinh}(c+d x)}\right )}{d e^2}-\frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{\text {arcsinh}(c+d x)}\right )}{d e^2}+\frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{\text {arcsinh}(c+d x)}\right )}{d e^2} \\ & = -\frac {(a+b \text {arcsinh}(c+d x))^2}{d e^2 (c+d x)}-\frac {4 b (a+b \text {arcsinh}(c+d x)) \text {arctanh}\left (e^{\text {arcsinh}(c+d x)}\right )}{d e^2}-\frac {2 b^2 \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c+d x)}\right )}{d e^2}+\frac {2 b^2 \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c+d x)}\right )}{d e^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.64 \[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=\frac {-\frac {a^2}{c+d x}-2 a b \left (\frac {\text {arcsinh}(c+d x)}{c+d x}+\log \left (\frac {1}{2} (c+d x) \text {csch}\left (\frac {1}{2} \text {arcsinh}(c+d x)\right )\right )-\log \left (\sinh \left (\frac {1}{2} \text {arcsinh}(c+d x)\right )\right )\right )+b^2 \left (\text {arcsinh}(c+d x) \left (-\frac {\text {arcsinh}(c+d x)}{c+d x}+2 \log \left (1-e^{-\text {arcsinh}(c+d x)}\right )-2 \log \left (1+e^{-\text {arcsinh}(c+d x)}\right )\right )+2 \operatorname {PolyLog}\left (2,-e^{-\text {arcsinh}(c+d x)}\right )-2 \operatorname {PolyLog}\left (2,e^{-\text {arcsinh}(c+d x)}\right )\right )}{d e^2} \]

[In]

Integrate[(a + b*ArcSinh[c + d*x])^2/(c*e + d*e*x)^2,x]

[Out]

(-(a^2/(c + d*x)) - 2*a*b*(ArcSinh[c + d*x]/(c + d*x) + Log[((c + d*x)*Csch[ArcSinh[c + d*x]/2])/2] - Log[Sinh
[ArcSinh[c + d*x]/2]]) + b^2*(ArcSinh[c + d*x]*(-(ArcSinh[c + d*x]/(c + d*x)) + 2*Log[1 - E^(-ArcSinh[c + d*x]
)] - 2*Log[1 + E^(-ArcSinh[c + d*x])]) + 2*PolyLog[2, -E^(-ArcSinh[c + d*x])] - 2*PolyLog[2, E^(-ArcSinh[c + d
*x])]))/(d*e^2)

Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.85

method result size
derivativedivides \(\frac {-\frac {a^{2}}{e^{2} \left (d x +c \right )}+\frac {b^{2} \left (-\frac {\operatorname {arcsinh}\left (d x +c \right )^{2}}{d x +c}-2 \,\operatorname {arcsinh}\left (d x +c \right ) \ln \left (1+d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )-2 \operatorname {polylog}\left (2, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )+2 \,\operatorname {arcsinh}\left (d x +c \right ) \ln \left (1-d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )+2 \operatorname {polylog}\left (2, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )\right )}{e^{2}}+\frac {2 a b \left (-\frac {\operatorname {arcsinh}\left (d x +c \right )}{d x +c}-\operatorname {arctanh}\left (\frac {1}{\sqrt {1+\left (d x +c \right )^{2}}}\right )\right )}{e^{2}}}{d}\) \(185\)
default \(\frac {-\frac {a^{2}}{e^{2} \left (d x +c \right )}+\frac {b^{2} \left (-\frac {\operatorname {arcsinh}\left (d x +c \right )^{2}}{d x +c}-2 \,\operatorname {arcsinh}\left (d x +c \right ) \ln \left (1+d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )-2 \operatorname {polylog}\left (2, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )+2 \,\operatorname {arcsinh}\left (d x +c \right ) \ln \left (1-d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )+2 \operatorname {polylog}\left (2, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )\right )}{e^{2}}+\frac {2 a b \left (-\frac {\operatorname {arcsinh}\left (d x +c \right )}{d x +c}-\operatorname {arctanh}\left (\frac {1}{\sqrt {1+\left (d x +c \right )^{2}}}\right )\right )}{e^{2}}}{d}\) \(185\)
parts \(-\frac {a^{2}}{e^{2} \left (d x +c \right ) d}+\frac {b^{2} \left (-\frac {\operatorname {arcsinh}\left (d x +c \right )^{2}}{d x +c}-2 \,\operatorname {arcsinh}\left (d x +c \right ) \ln \left (1+d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )-2 \operatorname {polylog}\left (2, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )+2 \,\operatorname {arcsinh}\left (d x +c \right ) \ln \left (1-d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )+2 \operatorname {polylog}\left (2, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )\right )}{e^{2} d}+\frac {2 a b \left (-\frac {\operatorname {arcsinh}\left (d x +c \right )}{d x +c}-\operatorname {arctanh}\left (\frac {1}{\sqrt {1+\left (d x +c \right )^{2}}}\right )\right )}{e^{2} d}\) \(190\)

[In]

int((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-a^2/e^2/(d*x+c)+b^2/e^2*(-1/(d*x+c)*arcsinh(d*x+c)^2-2*arcsinh(d*x+c)*ln(1+d*x+c+(1+(d*x+c)^2)^(1/2))-2*
polylog(2,-d*x-c-(1+(d*x+c)^2)^(1/2))+2*arcsinh(d*x+c)*ln(1-d*x-c-(1+(d*x+c)^2)^(1/2))+2*polylog(2,d*x+c+(1+(d
*x+c)^2)^(1/2)))+2*a*b/e^2*(-1/(d*x+c)*arcsinh(d*x+c)-arctanh(1/(1+(d*x+c)^2)^(1/2))))

Fricas [F]

\[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}}{{\left (d e x + c e\right )}^{2}} \,d x } \]

[In]

integrate((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^2,x, algorithm="fricas")

[Out]

integral((b^2*arcsinh(d*x + c)^2 + 2*a*b*arcsinh(d*x + c) + a^2)/(d^2*e^2*x^2 + 2*c*d*e^2*x + c^2*e^2), x)

Sympy [F]

\[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=\frac {\int \frac {a^{2}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {2 a b \operatorname {asinh}{\left (c + d x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx}{e^{2}} \]

[In]

integrate((a+b*asinh(d*x+c))**2/(d*e*x+c*e)**2,x)

[Out]

(Integral(a**2/(c**2 + 2*c*d*x + d**2*x**2), x) + Integral(b**2*asinh(c + d*x)**2/(c**2 + 2*c*d*x + d**2*x**2)
, x) + Integral(2*a*b*asinh(c + d*x)/(c**2 + 2*c*d*x + d**2*x**2), x))/e**2

Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}}{{\left (d e x + c e\right )}^{2}} \,d x } \]

[In]

integrate((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^2,x, algorithm="giac")

[Out]

integrate((b*arcsinh(d*x + c) + a)^2/(d*e*x + c*e)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \text {arcsinh}(c+d x))^2}{(c e+d e x)^2} \, dx=\int \frac {{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^2}{{\left (c\,e+d\,e\,x\right )}^2} \,d x \]

[In]

int((a + b*asinh(c + d*x))^2/(c*e + d*e*x)^2,x)

[Out]

int((a + b*asinh(c + d*x))^2/(c*e + d*e*x)^2, x)