\(\int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx\) [165]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 103 \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=-\frac {e (c+d x) \sqrt {1+(c+d x)^2}}{b d (a+b \text {arcsinh}(c+d x))}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d}-\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d} \]

[Out]

e*Chi(2*(a+b*arcsinh(d*x+c))/b)*cosh(2*a/b)/b^2/d-e*Shi(2*(a+b*arcsinh(d*x+c))/b)*sinh(2*a/b)/b^2/d-e*(d*x+c)*
(1+(d*x+c)^2)^(1/2)/b/d/(a+b*arcsinh(d*x+c))

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {5859, 12, 5778, 3384, 3379, 3382} \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d}-\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d}-\frac {e \sqrt {(c+d x)^2+1} (c+d x)}{b d (a+b \text {arcsinh}(c+d x))} \]

[In]

Int[(c*e + d*e*x)/(a + b*ArcSinh[c + d*x])^2,x]

[Out]

-((e*(c + d*x)*Sqrt[1 + (c + d*x)^2])/(b*d*(a + b*ArcSinh[c + d*x]))) + (e*Cosh[(2*a)/b]*CoshIntegral[(2*(a +
b*ArcSinh[c + d*x]))/b])/(b^2*d) - (e*Sinh[(2*a)/b]*SinhIntegral[(2*(a + b*ArcSinh[c + d*x]))/b])/(b^2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5778

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSi
nh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[1/(b^2*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[x^(n + 1), Si
nh[-a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c}
, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rule 5859

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {e x}{(a+b \text {arcsinh}(x))^2} \, dx,x,c+d x\right )}{d} \\ & = \frac {e \text {Subst}\left (\int \frac {x}{(a+b \text {arcsinh}(x))^2} \, dx,x,c+d x\right )}{d} \\ & = -\frac {e (c+d x) \sqrt {1+(c+d x)^2}}{b d (a+b \text {arcsinh}(c+d x))}+\frac {e \text {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{b^2 d} \\ & = -\frac {e (c+d x) \sqrt {1+(c+d x)^2}}{b d (a+b \text {arcsinh}(c+d x))}+\frac {\left (e \cosh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{b^2 d}-\frac {\left (e \sinh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{b^2 d} \\ & = -\frac {e (c+d x) \sqrt {1+(c+d x)^2}}{b d (a+b \text {arcsinh}(c+d x))}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d}-\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.94 \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\frac {e \left (-\frac {b (c+d x) \sqrt {1+c^2+2 c d x+d^2 x^2}}{a+b \text {arcsinh}(c+d x)}+\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )\right )}{b^2 d} \]

[In]

Integrate[(c*e + d*e*x)/(a + b*ArcSinh[c + d*x])^2,x]

[Out]

(e*(-((b*(c + d*x)*Sqrt[1 + c^2 + 2*c*d*x + d^2*x^2])/(a + b*ArcSinh[c + d*x])) + Cosh[(2*a)/b]*CoshIntegral[2
*(a/b + ArcSinh[c + d*x])] - Sinh[(2*a)/b]*SinhIntegral[2*(a/b + ArcSinh[c + d*x])]))/(b^2*d)

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.55

method result size
derivativedivides \(\frac {\frac {\left (-2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+2 \left (d x +c \right )^{2}+1\right ) e}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {2 a}{b}\right )}{2 b^{2}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {2 a}{b}\right )}{2 b^{2}}}{d}\) \(160\)
default \(\frac {\frac {\left (-2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+2 \left (d x +c \right )^{2}+1\right ) e}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {2 a}{b}\right )}{2 b^{2}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {2 a}{b}\right )}{2 b^{2}}}{d}\) \(160\)

[In]

int((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/4*(-2*(d*x+c)*(1+(d*x+c)^2)^(1/2)+2*(d*x+c)^2+1)*e/b/(a+b*arcsinh(d*x+c))-1/2*e/b^2*exp(2*a/b)*Ei(1,2*a
rcsinh(d*x+c)+2*a/b)-1/4/b*e*(2*(d*x+c)^2+1+2*(d*x+c)*(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))-1/2/b^2*e*exp(
-2*a/b)*Ei(1,-2*arcsinh(d*x+c)-2*a/b))

Fricas [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((d*e*x + c*e)/(b^2*arcsinh(d*x + c)^2 + 2*a*b*arcsinh(d*x + c) + a^2), x)

Sympy [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=e \left (\int \frac {c}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {d x}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((d*e*x+c*e)/(a+b*asinh(d*x+c))**2,x)

[Out]

e*(Integral(c/(a**2 + 2*a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x) + Integral(d*x/(a**2 + 2*a*b*asinh(c
+ d*x) + b**2*asinh(c + d*x)**2), x))

Maxima [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x, algorithm="maxima")

[Out]

-(d^4*e*x^4 + 4*c*d^3*e*x^3 + c^4*e + c^2*e + (6*c^2*d^2*e + d^2*e)*x^2 + 2*(2*c^3*d*e + c*d*e)*x + (d^3*e*x^3
 + 3*c*d^2*e*x^2 + c^3*e + c*e + (3*c^2*d*e + d*e)*x)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(a*b*d^3*x^2 + 2*a*b*
c*d^2*x + (c^2*d + d)*a*b + (b^2*d^3*x^2 + 2*b^2*c*d^2*x + (c^2*d + d)*b^2 + (b^2*d^2*x + b^2*c*d)*sqrt(d^2*x^
2 + 2*c*d*x + c^2 + 1))*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + (a*b*d^2*x + a*b*c*d)*sqrt(d^2*x^2
+ 2*c*d*x + c^2 + 1)) + integrate((2*d^5*e*x^5 + 10*c*d^4*e*x^4 + 2*c^5*e + 4*c^3*e + 4*(5*c^2*d^3*e + d^3*e)*
x^3 + 4*(5*c^3*d^2*e + 3*c*d^2*e)*x^2 + 2*(d^3*e*x^3 + 3*c*d^2*e*x^2 + 3*c^2*d*e*x + c^3*e)*(d^2*x^2 + 2*c*d*x
 + c^2 + 1) + 2*c*e + 2*(5*c^4*d*e + 6*c^2*d*e + d*e)*x + (4*d^4*e*x^4 + 16*c*d^3*e*x^3 + 4*c^4*e + 4*c^2*e +
4*(6*c^2*d^2*e + d^2*e)*x^2 + 8*(2*c^3*d*e + c*d*e)*x + e)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(a*b*d^4*x^4 + 4
*a*b*c*d^3*x^3 + 2*(3*c^2*d^2 + d^2)*a*b*x^2 + 4*(c^3*d + c*d)*a*b*x + (c^4 + 2*c^2 + 1)*a*b + (a*b*d^2*x^2 +
2*a*b*c*d*x + a*b*c^2)*(d^2*x^2 + 2*c*d*x + c^2 + 1) + (b^2*d^4*x^4 + 4*b^2*c*d^3*x^3 + 2*(3*c^2*d^2 + d^2)*b^
2*x^2 + 4*(c^3*d + c*d)*b^2*x + (c^4 + 2*c^2 + 1)*b^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*(d^2*x^2 + 2*c*d
*x + c^2 + 1) + 2*(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + (3*c^2*d + d)*b^2*x + (c^3 + c)*b^2)*sqrt(d^2*x^2 + 2*c*d*x
 + c^2 + 1))*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + 2*(a*b*d^3*x^3 + 3*a*b*c*d^2*x^2 + (3*c^2*d +
d)*a*b*x + (c^3 + c)*a*b)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)), x)

Giac [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)/(b*arcsinh(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int \frac {c\,e+d\,e\,x}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((c*e + d*e*x)/(a + b*asinh(c + d*x))^2,x)

[Out]

int((c*e + d*e*x)/(a + b*asinh(c + d*x))^2, x)