\(\int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx\) [212]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 255 \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=-\frac {2 e^2 (c+d x)^2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {e^2 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^2 e^{\frac {3 a}{b}} \sqrt {3 \pi } \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^2 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}+\frac {e^2 e^{-\frac {3 a}{b}} \sqrt {3 \pi } \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d} \]

[Out]

1/4*e^2*exp(a/b)*erf((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/d-1/4*e^2*erfi((a+b*arcsinh(d*x+c))^
(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/d/exp(a/b)-1/4*e^2*exp(3*a/b)*erf(3^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*
3^(1/2)*Pi^(1/2)/b^(3/2)/d+1/4*e^2*erfi(3^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/b^(3/2)/d
/exp(3*a/b)-2*e^2*(d*x+c)^2*(1+(d*x+c)^2)^(1/2)/b/d/(a+b*arcsinh(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {5859, 12, 5778, 3389, 2211, 2236, 2235} \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\frac {\sqrt {\pi } e^2 e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {\sqrt {3 \pi } e^2 e^{\frac {3 a}{b}} \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {\sqrt {\pi } e^2 e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}+\frac {\sqrt {3 \pi } e^2 e^{-\frac {3 a}{b}} \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {2 e^2 (c+d x)^2 \sqrt {(c+d x)^2+1}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}} \]

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(3/2),x]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSinh[c + d*x]]) + (e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt
[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*b^(3/2)*d) - (e^2*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh
[c + d*x]])/Sqrt[b]])/(4*b^(3/2)*d) - (e^2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*b^(3/2)*d*E
^(a/b)) + (e^2*Sqrt[3*Pi]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4*b^(3/2)*d*E^((3*a)/b))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5778

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSi
nh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[1/(b^2*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[x^(n + 1), Si
nh[-a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c}
, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rule 5859

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {e^2 x^2}{(a+b \text {arcsinh}(x))^{3/2}} \, dx,x,c+d x\right )}{d} \\ & = \frac {e^2 \text {Subst}\left (\int \frac {x^2}{(a+b \text {arcsinh}(x))^{3/2}} \, dx,x,c+d x\right )}{d} \\ & = -\frac {2 e^2 (c+d x)^2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {\left (2 e^2\right ) \text {Subst}\left (\int \left (-\frac {3 \sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{4 \sqrt {x}}+\frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{4 \sqrt {x}}\right ) \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{b^2 d} \\ & = -\frac {2 e^2 (c+d x)^2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {e^2 \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{2 b^2 d}-\frac {\left (3 e^2\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{2 b^2 d} \\ & = -\frac {2 e^2 (c+d x)^2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {e^2 \text {Subst}\left (\int \frac {e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{4 b^2 d}-\frac {e^2 \text {Subst}\left (\int \frac {e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{4 b^2 d}-\frac {\left (3 e^2\right ) \text {Subst}\left (\int \frac {e^{-i \left (\frac {3 i a}{b}-\frac {3 i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{4 b^2 d}+\frac {\left (3 e^2\right ) \text {Subst}\left (\int \frac {e^{i \left (\frac {3 i a}{b}-\frac {3 i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{4 b^2 d} \\ & = -\frac {2 e^2 (c+d x)^2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {e^2 \text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{2 b^2 d}-\frac {e^2 \text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{2 b^2 d}-\frac {\left (3 e^2\right ) \text {Subst}\left (\int e^{\frac {3 a}{b}-\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{2 b^2 d}+\frac {\left (3 e^2\right ) \text {Subst}\left (\int e^{-\frac {3 a}{b}+\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{2 b^2 d} \\ & = -\frac {2 e^2 (c+d x)^2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {e^2 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^2 e^{\frac {3 a}{b}} \sqrt {3 \pi } \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^2 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}+\frac {e^2 e^{-\frac {3 a}{b}} \sqrt {3 \pi } \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.28 \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\frac {e^2 e^{-3 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )} \left (-e^{\frac {3 a}{b}}+e^{\frac {3 a}{b}+2 \text {arcsinh}(c+d x)}+e^{\frac {3 a}{b}+4 \text {arcsinh}(c+d x)}-e^{\frac {3 a}{b}+6 \text {arcsinh}(c+d x)}-e^{\frac {4 a}{b}+3 \text {arcsinh}(c+d x)} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\text {arcsinh}(c+d x)\right )+\sqrt {3} e^{3 \text {arcsinh}(c+d x)} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )-e^{\frac {2 a}{b}+3 \text {arcsinh}(c+d x)} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )+\sqrt {3} e^{\frac {6 a}{b}+3 \text {arcsinh}(c+d x)} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )\right )}{4 b d \sqrt {a+b \text {arcsinh}(c+d x)}} \]

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(3/2),x]

[Out]

(e^2*(-E^((3*a)/b) + E^((3*a)/b + 2*ArcSinh[c + d*x]) + E^((3*a)/b + 4*ArcSinh[c + d*x]) - E^((3*a)/b + 6*ArcS
inh[c + d*x]) - E^((4*a)/b + 3*ArcSinh[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, a/b + ArcSinh[c + d*x
]] + Sqrt[3]*E^(3*ArcSinh[c + d*x])*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-3*(a + b*ArcSinh[c + d*x]
))/b] - E^((2*a)/b + 3*ArcSinh[c + d*x])*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c + d
*x])/b)] + Sqrt[3]*E^((6*a)/b + 3*ArcSinh[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, (3*(a + b*ArcSinh[
c + d*x]))/b]))/(4*b*d*E^(3*(a/b + ArcSinh[c + d*x]))*Sqrt[a + b*ArcSinh[c + d*x]])

Maple [F]

\[\int \frac {\left (d e x +c e \right )^{2}}{\left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{\frac {3}{2}}}d x\]

[In]

int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x)

[Out]

int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=e^{2} \left (\int \frac {c^{2}}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {d^{2} x^{2}}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {2 c d x}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((d*e*x+c*e)**2/(a+b*asinh(d*x+c))**(3/2),x)

[Out]

e**2*(Integral(c**2/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integra
l(d**2*x**2/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integral(2*c*d*
x/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x))

Maxima [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^2}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((c*e + d*e*x)^2/(a + b*asinh(c + d*x))^(3/2),x)

[Out]

int((c*e + d*e*x)^2/(a + b*asinh(c + d*x))^(3/2), x)