\(\int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx\) [214]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 122 \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=-\frac {2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d} \]

[Out]

-exp(a/b)*erf((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/d+erfi((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*
Pi^(1/2)/b^(3/2)/d/exp(a/b)-2*(1+(d*x+c)^2)^(1/2)/b/d/(a+b*arcsinh(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5858, 5773, 5819, 3389, 2211, 2236, 2235} \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=-\frac {\sqrt {\pi } e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {\sqrt {\pi } e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 \sqrt {(c+d x)^2+1}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}} \]

[In]

Int[(a + b*ArcSinh[c + d*x])^(-3/2),x]

[Out]

(-2*Sqrt[1 + (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSinh[c + d*x]]) - (E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d
*x]]/Sqrt[b]])/(b^(3/2)*d) + (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(b^(3/2)*d*E^(a/b))

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5773

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1
)/(b*c*(n + 1))), x] - Dist[c/(b*(n + 1)), Int[x*((a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2]), x], x] /; F
reeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rule 5858

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSinh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{(a+b \text {arcsinh}(x))^{3/2}} \, dx,x,c+d x\right )}{d} \\ & = -\frac {2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 \text {Subst}\left (\int \frac {x}{\sqrt {1+x^2} \sqrt {a+b \text {arcsinh}(x)}} \, dx,x,c+d x\right )}{b d} \\ & = -\frac {2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {2 \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{b^2 d} \\ & = -\frac {2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {\text {Subst}\left (\int \frac {e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{b^2 d}+\frac {\text {Subst}\left (\int \frac {e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \text {arcsinh}(c+d x)\right )}{b^2 d} \\ & = -\frac {2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {2 \text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b^2 d}+\frac {2 \text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b^2 d} \\ & = -\frac {2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.27 \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\frac {e^{-\frac {a+b \text {arcsinh}(c+d x)}{b}} \left (-e^{a/b} \left (1+e^{2 \text {arcsinh}(c+d x)}\right )+e^{\frac {2 a}{b}+\text {arcsinh}(c+d x)} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\text {arcsinh}(c+d x)\right )+e^{\text {arcsinh}(c+d x)} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )\right )}{b d \sqrt {a+b \text {arcsinh}(c+d x)}} \]

[In]

Integrate[(a + b*ArcSinh[c + d*x])^(-3/2),x]

[Out]

(-(E^(a/b)*(1 + E^(2*ArcSinh[c + d*x]))) + E^((2*a)/b + ArcSinh[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1
/2, a/b + ArcSinh[c + d*x]] + E^ArcSinh[c + d*x]*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, -((a + b*ArcSi
nh[c + d*x])/b)])/(b*d*E^((a + b*ArcSinh[c + d*x])/b)*Sqrt[a + b*ArcSinh[c + d*x]])

Maple [F]

\[\int \frac {1}{\left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{\frac {3}{2}}}d x\]

[In]

int(1/(a+b*arcsinh(d*x+c))^(3/2),x)

[Out]

int(1/(a+b*arcsinh(d*x+c))^(3/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \operatorname {asinh}{\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/(a+b*asinh(d*x+c))**(3/2),x)

[Out]

Integral((a + b*asinh(c + d*x))**(-3/2), x)

Maxima [F]

\[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(d*x + c) + a)^(-3/2), x)

Giac [F]

\[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(d*x + c) + a)^(-3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(1/(a + b*asinh(c + d*x))^(3/2),x)

[Out]

int(1/(a + b*asinh(c + d*x))^(3/2), x)