\(\int \text {arcsinh}(\sqrt {x}) \, dx\) [294]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 6, antiderivative size = 35 \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=-\frac {1}{2} \sqrt {x} \sqrt {1+x}+\frac {\text {arcsinh}\left (\sqrt {x}\right )}{2}+x \text {arcsinh}\left (\sqrt {x}\right ) \]

[Out]

1/2*arcsinh(x^(1/2))+x*arcsinh(x^(1/2))-1/2*x^(1/2)*(1+x)^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {5874, 12, 1978, 52, 56, 221} \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=x \text {arcsinh}\left (\sqrt {x}\right )+\frac {\text {arcsinh}\left (\sqrt {x}\right )}{2}-\frac {1}{2} \sqrt {x} \sqrt {x+1} \]

[In]

Int[ArcSinh[Sqrt[x]],x]

[Out]

-1/2*(Sqrt[x]*Sqrt[1 + x]) + ArcSinh[Sqrt[x]]/2 + x*ArcSinh[Sqrt[x]]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 56

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 1978

Int[(u_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Int[u*((a*e + b*e*
x^n)^p/(c + d*x^n)^p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && GtQ[b*d*e, 0] && GtQ[c - a*(d/b), 0]

Rule 5874

Int[ArcSinh[u_], x_Symbol] :> Simp[x*ArcSinh[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/Sqrt[1 + u^2]), x], x]
/; InverseFunctionFreeQ[u, x] &&  !FunctionOfExponentialQ[u, x]

Rubi steps \begin{align*} \text {integral}& = x \text {arcsinh}\left (\sqrt {x}\right )-\int \frac {1}{2} \sqrt {\frac {x}{1+x}} \, dx \\ & = x \text {arcsinh}\left (\sqrt {x}\right )-\frac {1}{2} \int \sqrt {\frac {x}{1+x}} \, dx \\ & = x \text {arcsinh}\left (\sqrt {x}\right )-\frac {1}{2} \int \frac {\sqrt {x}}{\sqrt {1+x}} \, dx \\ & = -\frac {1}{2} \sqrt {x} \sqrt {1+x}+x \text {arcsinh}\left (\sqrt {x}\right )+\frac {1}{4} \int \frac {1}{\sqrt {x} \sqrt {1+x}} \, dx \\ & = -\frac {1}{2} \sqrt {x} \sqrt {1+x}+x \text {arcsinh}\left (\sqrt {x}\right )+\frac {1}{2} \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2}} \, dx,x,\sqrt {x}\right ) \\ & = -\frac {1}{2} \sqrt {x} \sqrt {1+x}+\frac {\text {arcsinh}\left (\sqrt {x}\right )}{2}+x \text {arcsinh}\left (\sqrt {x}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.31 \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=\frac {1}{2} \left (-\frac {x}{\sqrt {\frac {x}{1+x}}}+2 x \text {arcsinh}\left (\sqrt {x}\right )-\log \left (-\sqrt {x}+\sqrt {1+x}\right )\right ) \]

[In]

Integrate[ArcSinh[Sqrt[x]],x]

[Out]

(-(x/Sqrt[x/(1 + x)]) + 2*x*ArcSinh[Sqrt[x]] - Log[-Sqrt[x] + Sqrt[1 + x]])/2

Maple [A] (verified)

Time = 0.01 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.69

method result size
derivativedivides \(\frac {\operatorname {arcsinh}\left (\sqrt {x}\right )}{2}+x \,\operatorname {arcsinh}\left (\sqrt {x}\right )-\frac {\sqrt {x}\, \sqrt {1+x}}{2}\) \(24\)
default \(\frac {\operatorname {arcsinh}\left (\sqrt {x}\right )}{2}+x \,\operatorname {arcsinh}\left (\sqrt {x}\right )-\frac {\sqrt {x}\, \sqrt {1+x}}{2}\) \(24\)
parts \(x \,\operatorname {arcsinh}\left (\sqrt {x}\right )-\frac {\sqrt {x}\, \sqrt {1+x}}{2}+\frac {\sqrt {x \left (1+x \right )}\, \ln \left (\frac {1}{2}+x +\sqrt {x^{2}+x}\right )}{4 \sqrt {x}\, \sqrt {1+x}}\) \(46\)

[In]

int(arcsinh(x^(1/2)),x,method=_RETURNVERBOSE)

[Out]

1/2*arcsinh(x^(1/2))+x*arcsinh(x^(1/2))-1/2*x^(1/2)*(1+x)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.80 \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=\frac {1}{2} \, {\left (2 \, x + 1\right )} \log \left (\sqrt {x + 1} + \sqrt {x}\right ) - \frac {1}{2} \, \sqrt {x + 1} \sqrt {x} \]

[In]

integrate(arcsinh(x^(1/2)),x, algorithm="fricas")

[Out]

1/2*(2*x + 1)*log(sqrt(x + 1) + sqrt(x)) - 1/2*sqrt(x + 1)*sqrt(x)

Sympy [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.83 \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=- \frac {\sqrt {x} \sqrt {x + 1}}{2} + x \operatorname {asinh}{\left (\sqrt {x} \right )} + \frac {\operatorname {asinh}{\left (\sqrt {x} \right )}}{2} \]

[In]

integrate(asinh(x**(1/2)),x)

[Out]

-sqrt(x)*sqrt(x + 1)/2 + x*asinh(sqrt(x)) + asinh(sqrt(x))/2

Maxima [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.66 \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=x \operatorname {arsinh}\left (\sqrt {x}\right ) - \frac {1}{2} \, \sqrt {x + 1} \sqrt {x} + \frac {1}{2} \, \operatorname {arsinh}\left (\sqrt {x}\right ) \]

[In]

integrate(arcsinh(x^(1/2)),x, algorithm="maxima")

[Out]

x*arcsinh(sqrt(x)) - 1/2*sqrt(x + 1)*sqrt(x) + 1/2*arcsinh(sqrt(x))

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.14 \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=x \log \left (\sqrt {x + 1} + \sqrt {x}\right ) - \frac {1}{2} \, \sqrt {x^{2} + x} - \frac {1}{4} \, \log \left ({\left | -2 \, x + 2 \, \sqrt {x^{2} + x} - 1 \right |}\right ) \]

[In]

integrate(arcsinh(x^(1/2)),x, algorithm="giac")

[Out]

x*log(sqrt(x + 1) + sqrt(x)) - 1/2*sqrt(x^2 + x) - 1/4*log(abs(-2*x + 2*sqrt(x^2 + x) - 1))

Mupad [B] (verification not implemented)

Time = 3.34 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.89 \[ \int \text {arcsinh}\left (\sqrt {x}\right ) \, dx=\mathrm {atanh}\left (\frac {\sqrt {x}}{\sqrt {x+1}-1}\right )+x\,\mathrm {asinh}\left (\sqrt {x}\right )-\frac {\sqrt {x}\,\sqrt {x+1}}{2} \]

[In]

int(asinh(x^(1/2)),x)

[Out]

atanh(x^(1/2)/((x + 1)^(1/2) - 1)) + x*asinh(x^(1/2)) - (x^(1/2)*(x + 1)^(1/2))/2