\(\int \frac {\text {arcsinh}(\sqrt {x})}{x^5} \, dx\) [299]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 78 \[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=-\frac {\sqrt {1+x}}{28 x^{7/2}}+\frac {3 \sqrt {1+x}}{70 x^{5/2}}-\frac {2 \sqrt {1+x}}{35 x^{3/2}}+\frac {4 \sqrt {1+x}}{35 \sqrt {x}}-\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4} \]

[Out]

-1/4*arcsinh(x^(1/2))/x^4-1/28*(1+x)^(1/2)/x^(7/2)+3/70*(1+x)^(1/2)/x^(5/2)-2/35*(1+x)^(1/2)/x^(3/2)+4/35*(1+x
)^(1/2)/x^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {5875, 12, 47, 37} \[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=-\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4}-\frac {2 \sqrt {x+1}}{35 x^{3/2}}+\frac {3 \sqrt {x+1}}{70 x^{5/2}}-\frac {\sqrt {x+1}}{28 x^{7/2}}+\frac {4 \sqrt {x+1}}{35 \sqrt {x}} \]

[In]

Int[ArcSinh[Sqrt[x]]/x^5,x]

[Out]

-1/28*Sqrt[1 + x]/x^(7/2) + (3*Sqrt[1 + x])/(70*x^(5/2)) - (2*Sqrt[1 + x])/(35*x^(3/2)) + (4*Sqrt[1 + x])/(35*
Sqrt[x]) - ArcSinh[Sqrt[x]]/(4*x^4)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 5875

Int[((a_.) + ArcSinh[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcSin
h[u])/(d*(m + 1))), x] - Dist[b/(d*(m + 1)), Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/Sqrt[1 + u^2]),
x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !FunctionOfQ[(c + d*x)
^(m + 1), u, x] &&  !FunctionOfExponentialQ[u, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4}+\frac {1}{4} \int \frac {1}{2 x^{9/2} \sqrt {1+x}} \, dx \\ & = -\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4}+\frac {1}{8} \int \frac {1}{x^{9/2} \sqrt {1+x}} \, dx \\ & = -\frac {\sqrt {1+x}}{28 x^{7/2}}-\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4}-\frac {3}{28} \int \frac {1}{x^{7/2} \sqrt {1+x}} \, dx \\ & = -\frac {\sqrt {1+x}}{28 x^{7/2}}+\frac {3 \sqrt {1+x}}{70 x^{5/2}}-\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4}+\frac {3}{35} \int \frac {1}{x^{5/2} \sqrt {1+x}} \, dx \\ & = -\frac {\sqrt {1+x}}{28 x^{7/2}}+\frac {3 \sqrt {1+x}}{70 x^{5/2}}-\frac {2 \sqrt {1+x}}{35 x^{3/2}}-\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4}-\frac {2}{35} \int \frac {1}{x^{3/2} \sqrt {1+x}} \, dx \\ & = -\frac {\sqrt {1+x}}{28 x^{7/2}}+\frac {3 \sqrt {1+x}}{70 x^{5/2}}-\frac {2 \sqrt {1+x}}{35 x^{3/2}}+\frac {4 \sqrt {1+x}}{35 \sqrt {x}}-\frac {\text {arcsinh}\left (\sqrt {x}\right )}{4 x^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.56 \[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=\frac {\sqrt {x} \sqrt {1+x} \left (-5+6 x-8 x^2+16 x^3\right )-35 \text {arcsinh}\left (\sqrt {x}\right )}{140 x^4} \]

[In]

Integrate[ArcSinh[Sqrt[x]]/x^5,x]

[Out]

(Sqrt[x]*Sqrt[1 + x]*(-5 + 6*x - 8*x^2 + 16*x^3) - 35*ArcSinh[Sqrt[x]])/(140*x^4)

Maple [A] (verified)

Time = 0.01 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.65

method result size
derivativedivides \(-\frac {\operatorname {arcsinh}\left (\sqrt {x}\right )}{4 x^{4}}-\frac {\sqrt {1+x}}{28 x^{\frac {7}{2}}}+\frac {3 \sqrt {1+x}}{70 x^{\frac {5}{2}}}-\frac {2 \sqrt {1+x}}{35 x^{\frac {3}{2}}}+\frac {4 \sqrt {1+x}}{35 \sqrt {x}}\) \(51\)
default \(-\frac {\operatorname {arcsinh}\left (\sqrt {x}\right )}{4 x^{4}}-\frac {\sqrt {1+x}}{28 x^{\frac {7}{2}}}+\frac {3 \sqrt {1+x}}{70 x^{\frac {5}{2}}}-\frac {2 \sqrt {1+x}}{35 x^{\frac {3}{2}}}+\frac {4 \sqrt {1+x}}{35 \sqrt {x}}\) \(51\)
parts \(-\frac {\operatorname {arcsinh}\left (\sqrt {x}\right )}{4 x^{4}}-\frac {\sqrt {1+x}}{28 x^{\frac {7}{2}}}+\frac {3 \sqrt {1+x}}{70 x^{\frac {5}{2}}}-\frac {2 \sqrt {1+x}}{35 x^{\frac {3}{2}}}+\frac {4 \sqrt {1+x}}{35 \sqrt {x}}\) \(51\)

[In]

int(arcsinh(x^(1/2))/x^5,x,method=_RETURNVERBOSE)

[Out]

-1/4*arcsinh(x^(1/2))/x^4-1/28*(1+x)^(1/2)/x^(7/2)+3/70*(1+x)^(1/2)/x^(5/2)-2/35*(1+x)^(1/2)/x^(3/2)+4/35*(1+x
)^(1/2)/x^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.54 \[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=\frac {{\left (16 \, x^{3} - 8 \, x^{2} + 6 \, x - 5\right )} \sqrt {x + 1} \sqrt {x} - 35 \, \log \left (\sqrt {x + 1} + \sqrt {x}\right )}{140 \, x^{4}} \]

[In]

integrate(arcsinh(x^(1/2))/x^5,x, algorithm="fricas")

[Out]

1/140*((16*x^3 - 8*x^2 + 6*x - 5)*sqrt(x + 1)*sqrt(x) - 35*log(sqrt(x + 1) + sqrt(x)))/x^4

Sympy [F]

\[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=\int \frac {\operatorname {asinh}{\left (\sqrt {x} \right )}}{x^{5}}\, dx \]

[In]

integrate(asinh(x**(1/2))/x**5,x)

[Out]

Integral(asinh(sqrt(x))/x**5, x)

Maxima [A] (verification not implemented)

none

Time = 0.40 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.64 \[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=\frac {4 \, \sqrt {x + 1}}{35 \, \sqrt {x}} - \frac {2 \, \sqrt {x + 1}}{35 \, x^{\frac {3}{2}}} + \frac {3 \, \sqrt {x + 1}}{70 \, x^{\frac {5}{2}}} - \frac {\sqrt {x + 1}}{28 \, x^{\frac {7}{2}}} - \frac {\operatorname {arsinh}\left (\sqrt {x}\right )}{4 \, x^{4}} \]

[In]

integrate(arcsinh(x^(1/2))/x^5,x, algorithm="maxima")

[Out]

4/35*sqrt(x + 1)/sqrt(x) - 2/35*sqrt(x + 1)/x^(3/2) + 3/70*sqrt(x + 1)/x^(5/2) - 1/28*sqrt(x + 1)/x^(7/2) - 1/
4*arcsinh(sqrt(x))/x^4

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.05 \[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=-\frac {\log \left (\sqrt {x + 1} + \sqrt {x}\right )}{4 \, x^{4}} + \frac {8 \, {\left (35 \, {\left (\sqrt {x + 1} - \sqrt {x}\right )}^{6} - 21 \, {\left (\sqrt {x + 1} - \sqrt {x}\right )}^{4} + 7 \, {\left (\sqrt {x + 1} - \sqrt {x}\right )}^{2} - 1\right )}}{35 \, {\left ({\left (\sqrt {x + 1} - \sqrt {x}\right )}^{2} - 1\right )}^{7}} \]

[In]

integrate(arcsinh(x^(1/2))/x^5,x, algorithm="giac")

[Out]

-1/4*log(sqrt(x + 1) + sqrt(x))/x^4 + 8/35*(35*(sqrt(x + 1) - sqrt(x))^6 - 21*(sqrt(x + 1) - sqrt(x))^4 + 7*(s
qrt(x + 1) - sqrt(x))^2 - 1)/((sqrt(x + 1) - sqrt(x))^2 - 1)^7

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {arcsinh}\left (\sqrt {x}\right )}{x^5} \, dx=\int \frac {\mathrm {asinh}\left (\sqrt {x}\right )}{x^5} \,d x \]

[In]

int(asinh(x^(1/2))/x^5,x)

[Out]

int(asinh(x^(1/2))/x^5, x)