\(\int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx\) [24]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 18, antiderivative size = 18 \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\text {Int}\left (\frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))},x\right ) \]

[Out]

Unintegrable(1/(e*x+d)^2/(a+b*arcsinh(c*x)),x)

Rubi [N/A]

Not integrable

Time = 0.02 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx \]

[In]

Int[1/((d + e*x)^2*(a + b*ArcSinh[c*x])),x]

[Out]

Defer[Int][1/((d + e*x)^2*(a + b*ArcSinh[c*x])), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 0.32 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.11 \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx \]

[In]

Integrate[1/((d + e*x)^2*(a + b*ArcSinh[c*x])),x]

[Out]

Integrate[1/((d + e*x)^2*(a + b*ArcSinh[c*x])), x]

Maple [N/A] (verified)

Not integrable

Time = 0.28 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00

\[\int \frac {1}{\left (e x +d \right )^{2} \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}d x\]

[In]

int(1/(e*x+d)^2/(a+b*arcsinh(c*x)),x)

[Out]

int(1/(e*x+d)^2/(a+b*arcsinh(c*x)),x)

Fricas [N/A]

Not integrable

Time = 0.24 (sec) , antiderivative size = 49, normalized size of antiderivative = 2.72 \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {1}{{\left (e x + d\right )}^{2} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(1/(e*x+d)^2/(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral(1/(a*e^2*x^2 + 2*a*d*e*x + a*d^2 + (b*e^2*x^2 + 2*b*d*e*x + b*d^2)*arcsinh(c*x)), x)

Sympy [N/A]

Not integrable

Time = 1.71 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.94 \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\int \frac {1}{\left (a + b \operatorname {asinh}{\left (c x \right )}\right ) \left (d + e x\right )^{2}}\, dx \]

[In]

integrate(1/(e*x+d)**2/(a+b*asinh(c*x)),x)

[Out]

Integral(1/((a + b*asinh(c*x))*(d + e*x)**2), x)

Maxima [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.11 \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {1}{{\left (e x + d\right )}^{2} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(1/(e*x+d)^2/(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

integrate(1/((e*x + d)^2*(b*arcsinh(c*x) + a)), x)

Giac [N/A]

Not integrable

Time = 0.86 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.11 \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {1}{{\left (e x + d\right )}^{2} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(1/(e*x+d)^2/(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

integrate(1/((e*x + d)^2*(b*arcsinh(c*x) + a)), x)

Mupad [N/A]

Not integrable

Time = 2.63 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.11 \[ \int \frac {1}{(d+e x)^2 (a+b \text {arcsinh}(c x))} \, dx=\int \frac {1}{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (d+e\,x\right )}^2} \,d x \]

[In]

int(1/((a + b*asinh(c*x))*(d + e*x)^2),x)

[Out]

int(1/((a + b*asinh(c*x))*(d + e*x)^2), x)