\(\int \frac {x}{\text {arcsinh}(a+b x)} \, dx\) [82]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 30 \[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=-\frac {a \text {Chi}(\text {arcsinh}(a+b x))}{b^2}+\frac {\text {Shi}(2 \text {arcsinh}(a+b x))}{2 b^2} \]

[Out]

-a*Chi(arcsinh(b*x+a))/b^2+1/2*Shi(2*arcsinh(b*x+a))/b^2

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.800, Rules used = {5859, 5830, 6873, 12, 6874, 3382, 5556, 3379} \[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=\frac {\text {Shi}(2 \text {arcsinh}(a+b x))}{2 b^2}-\frac {a \text {Chi}(\text {arcsinh}(a+b x))}{b^2} \]

[In]

Int[x/ArcSinh[a + b*x],x]

[Out]

-((a*CoshIntegral[ArcSinh[a + b*x]])/b^2) + SinhIntegral[2*ArcSinh[a + b*x]]/(2*b^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5830

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst
[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[m, 0]

Rule 5859

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {-\frac {a}{b}+\frac {x}{b}}{\text {arcsinh}(x)} \, dx,x,a+b x\right )}{b} \\ & = \frac {\text {Subst}\left (\int \frac {\cosh (x) \left (-\frac {a}{b}+\frac {\sinh (x)}{b}\right )}{x} \, dx,x,\text {arcsinh}(a+b x)\right )}{b} \\ & = \frac {\text {Subst}\left (\int \frac {\cosh (x) (-a+\sinh (x))}{b x} \, dx,x,\text {arcsinh}(a+b x)\right )}{b} \\ & = \frac {\text {Subst}\left (\int \frac {\cosh (x) (-a+\sinh (x))}{x} \, dx,x,\text {arcsinh}(a+b x)\right )}{b^2} \\ & = \frac {\text {Subst}\left (\int \left (-\frac {a \cosh (x)}{x}+\frac {\cosh (x) \sinh (x)}{x}\right ) \, dx,x,\text {arcsinh}(a+b x)\right )}{b^2} \\ & = \frac {\text {Subst}\left (\int \frac {\cosh (x) \sinh (x)}{x} \, dx,x,\text {arcsinh}(a+b x)\right )}{b^2}-\frac {a \text {Subst}\left (\int \frac {\cosh (x)}{x} \, dx,x,\text {arcsinh}(a+b x)\right )}{b^2} \\ & = -\frac {a \text {Chi}(\text {arcsinh}(a+b x))}{b^2}+\frac {\text {Subst}\left (\int \frac {\sinh (2 x)}{2 x} \, dx,x,\text {arcsinh}(a+b x)\right )}{b^2} \\ & = -\frac {a \text {Chi}(\text {arcsinh}(a+b x))}{b^2}+\frac {\text {Subst}\left (\int \frac {\sinh (2 x)}{x} \, dx,x,\text {arcsinh}(a+b x)\right )}{2 b^2} \\ & = -\frac {a \text {Chi}(\text {arcsinh}(a+b x))}{b^2}+\frac {\text {Shi}(2 \text {arcsinh}(a+b x))}{2 b^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.00 \[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=-\frac {a \text {Chi}(\text {arcsinh}(a+b x))}{b^2}+\frac {\text {Shi}(2 \text {arcsinh}(a+b x))}{2 b^2} \]

[In]

Integrate[x/ArcSinh[a + b*x],x]

[Out]

-((a*CoshIntegral[ArcSinh[a + b*x]])/b^2) + SinhIntegral[2*ArcSinh[a + b*x]]/(2*b^2)

Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.90

method result size
derivativedivides \(\frac {\frac {\operatorname {Shi}\left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right )}{2}-a \,\operatorname {Chi}\left (\operatorname {arcsinh}\left (b x +a \right )\right )}{b^{2}}\) \(27\)
default \(\frac {\frac {\operatorname {Shi}\left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right )}{2}-a \,\operatorname {Chi}\left (\operatorname {arcsinh}\left (b x +a \right )\right )}{b^{2}}\) \(27\)

[In]

int(x/arcsinh(b*x+a),x,method=_RETURNVERBOSE)

[Out]

1/b^2*(1/2*Shi(2*arcsinh(b*x+a))-a*Chi(arcsinh(b*x+a)))

Fricas [F]

\[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=\int { \frac {x}{\operatorname {arsinh}\left (b x + a\right )} \,d x } \]

[In]

integrate(x/arcsinh(b*x+a),x, algorithm="fricas")

[Out]

integral(x/arcsinh(b*x + a), x)

Sympy [F]

\[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=\int \frac {x}{\operatorname {asinh}{\left (a + b x \right )}}\, dx \]

[In]

integrate(x/asinh(b*x+a),x)

[Out]

Integral(x/asinh(a + b*x), x)

Maxima [F]

\[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=\int { \frac {x}{\operatorname {arsinh}\left (b x + a\right )} \,d x } \]

[In]

integrate(x/arcsinh(b*x+a),x, algorithm="maxima")

[Out]

integrate(x/arcsinh(b*x + a), x)

Giac [F]

\[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=\int { \frac {x}{\operatorname {arsinh}\left (b x + a\right )} \,d x } \]

[In]

integrate(x/arcsinh(b*x+a),x, algorithm="giac")

[Out]

integrate(x/arcsinh(b*x + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\text {arcsinh}(a+b x)} \, dx=\int \frac {x}{\mathrm {asinh}\left (a+b\,x\right )} \,d x \]

[In]

int(x/asinh(a + b*x),x)

[Out]

int(x/asinh(a + b*x), x)