\(\int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx\) [203]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 84 \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=-\frac {2 (a+b \text {arccosh}(c+d x))}{d e \sqrt {e (c+d x)}}+\frac {4 b \sqrt {1-c-d x} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{d e^{3/2} \sqrt {-1+c+d x}} \]

[Out]

4*b*EllipticF((e*(d*x+c))^(1/2)/e^(1/2),I)*(-d*x-c+1)^(1/2)/d/e^(3/2)/(d*x+c-1)^(1/2)-2*(a+b*arccosh(d*x+c))/d
/e/(e*(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {5996, 5883, 118, 117} \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\frac {4 b \sqrt {-c-d x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{d e^{3/2} \sqrt {c+d x-1}}-\frac {2 (a+b \text {arccosh}(c+d x))}{d e \sqrt {e (c+d x)}} \]

[In]

Int[(a + b*ArcCosh[c + d*x])/(c*e + d*e*x)^(3/2),x]

[Out]

(-2*(a + b*ArcCosh[c + d*x]))/(d*e*Sqrt[e*(c + d*x)]) + (4*b*Sqrt[1 - c - d*x]*EllipticF[ArcSin[Sqrt[e*(c + d*
x)]/Sqrt[e]], -1])/(d*e^(3/2)*Sqrt[-1 + c + d*x])

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2/(b*Sqrt[e]))*Rt
[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] &&
GtQ[c, 0] && GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])

Rule 118

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[1 + d*(x/c)]*
(Sqrt[1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x])), Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 5883

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcC
osh[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt
[1 + c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5996

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a+b \text {arccosh}(x)}{(e x)^{3/2}} \, dx,x,c+d x\right )}{d} \\ & = -\frac {2 (a+b \text {arccosh}(c+d x))}{d e \sqrt {e (c+d x)}}+\frac {(2 b) \text {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {e x} \sqrt {1+x}} \, dx,x,c+d x\right )}{d e} \\ & = -\frac {2 (a+b \text {arccosh}(c+d x))}{d e \sqrt {e (c+d x)}}+\frac {\left (2 b \sqrt {1-c-d x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {e x} \sqrt {1+x}} \, dx,x,c+d x\right )}{d e \sqrt {-1+c+d x}} \\ & = -\frac {2 (a+b \text {arccosh}(c+d x))}{d e \sqrt {e (c+d x)}}+\frac {4 b \sqrt {1-c-d x} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{d e^{3/2} \sqrt {-1+c+d x}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.12 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.10 \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\frac {2 \left (-a-b \text {arccosh}(c+d x)+\frac {2 b (c+d x) \sqrt {1-(c+d x)^2} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},(c+d x)^2\right )}{\sqrt {-1+c+d x} \sqrt {1+c+d x}}\right )}{d e \sqrt {e (c+d x)}} \]

[In]

Integrate[(a + b*ArcCosh[c + d*x])/(c*e + d*e*x)^(3/2),x]

[Out]

(2*(-a - b*ArcCosh[c + d*x] + (2*b*(c + d*x)*Sqrt[1 - (c + d*x)^2]*Hypergeometric2F1[1/4, 1/2, 5/4, (c + d*x)^
2])/(Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])))/(d*e*Sqrt[e*(c + d*x)])

Maple [A] (verified)

Time = 1.23 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.42

method result size
derivativedivides \(\frac {-\frac {2 a}{\sqrt {d e x +c e}}+2 b \left (-\frac {\operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{\sqrt {d e x +c e}}+\frac {2 \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right ) \sqrt {\frac {-d e x -c e +e}{e}}}{e \sqrt {-\frac {1}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(119\)
default \(\frac {-\frac {2 a}{\sqrt {d e x +c e}}+2 b \left (-\frac {\operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{\sqrt {d e x +c e}}+\frac {2 \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right ) \sqrt {\frac {-d e x -c e +e}{e}}}{e \sqrt {-\frac {1}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(119\)
parts \(-\frac {2 a}{\sqrt {d e x +c e}\, d e}+\frac {2 b \left (-\frac {\operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{\sqrt {d e x +c e}}+\frac {2 \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right ) \sqrt {-\frac {d e x +c e -e}{e}}}{e \sqrt {-\frac {1}{e}}\, \sqrt {\frac {d e x +c e -e}{e}}}\right )}{d e}\) \(124\)

[In]

int((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/d/e*(-a/(d*e*x+c*e)^(1/2)+b*(-1/(d*e*x+c*e)^(1/2)*arccosh(1/e*(d*e*x+c*e))+2/e*EllipticF((d*e*x+c*e)^(1/2)*(
-1/e)^(1/2),I)*((-d*e*x-c*e+e)/e)^(1/2)/(-1/e)^(1/2)/(-(-d*e*x-c*e+e)/e)^(1/2)))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.31 \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=-\frac {2 \, {\left (\sqrt {d e x + c e} b d^{2} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right ) + \sqrt {d e x + c e} a d^{2} - 2 \, \sqrt {d^{3} e} {\left (b d x + b c\right )} {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right )}}{d^{4} e^{2} x + c d^{3} e^{2}} \]

[In]

integrate((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x, algorithm="fricas")

[Out]

-2*(sqrt(d*e*x + c*e)*b*d^2*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)) + sqrt(d*e*x + c*e)*a*d^2 - 2*sqr
t(d^3*e)*(b*d*x + b*c)*weierstrassPInverse(4/d^2, 0, (d*x + c)/d))/(d^4*e^2*x + c*d^3*e^2)

Sympy [F]

\[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\int \frac {a + b \operatorname {acosh}{\left (c + d x \right )}}{\left (e \left (c + d x\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((a+b*acosh(d*x+c))/(d*e*x+c*e)**(3/2),x)

[Out]

Integral((a + b*acosh(c + d*x))/(e*(c + d*x))**(3/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\int { \frac {b \operatorname {arcosh}\left (d x + c\right ) + a}{{\left (d e x + c e\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(d*x + c) + a)/(d*e*x + c*e)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (c+d\,x\right )}{{\left (c\,e+d\,e\,x\right )}^{3/2}} \,d x \]

[In]

int((a + b*acosh(c + d*x))/(c*e + d*e*x)^(3/2),x)

[Out]

int((a + b*acosh(c + d*x))/(c*e + d*e*x)^(3/2), x)