\(\int x^{-1+n} \text {arccosh}(a+b x^n) \, dx\) [293]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 55 \[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=-\frac {\sqrt {-1+a+b x^n} \sqrt {1+a+b x^n}}{b n}+\frac {\left (a+b x^n\right ) \text {arccosh}\left (a+b x^n\right )}{b n} \]

[Out]

(a+b*x^n)*arccosh(a+b*x^n)/b/n-(-1+a+b*x^n)^(1/2)*(1+a+b*x^n)^(1/2)/b/n

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {6847, 5995, 5879, 75} \[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=\frac {\left (a+b x^n\right ) \text {arccosh}\left (a+b x^n\right )}{b n}-\frac {\sqrt {a+b x^n-1} \sqrt {a+b x^n+1}}{b n} \]

[In]

Int[x^(-1 + n)*ArcCosh[a + b*x^n],x]

[Out]

-((Sqrt[-1 + a + b*x^n]*Sqrt[1 + a + b*x^n])/(b*n)) + ((a + b*x^n)*ArcCosh[a + b*x^n])/(b*n)

Rule 75

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] &
& EqQ[a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]

Rule 5879

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCosh[c*x])^n, x] - Dist[b*c*n, In
t[x*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5995

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcCosh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 6847

Int[(u_)*(x_)^(m_.), x_Symbol] :> Dist[1/(m + 1), Subst[Int[SubstFor[x^(m + 1), u, x], x], x, x^(m + 1)], x] /
; FreeQ[m, x] && NeQ[m, -1] && FunctionOfQ[x^(m + 1), u, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \text {arccosh}(a+b x) \, dx,x,x^n\right )}{n} \\ & = \frac {\text {Subst}\left (\int \text {arccosh}(x) \, dx,x,a+b x^n\right )}{b n} \\ & = \frac {\left (a+b x^n\right ) \text {arccosh}\left (a+b x^n\right )}{b n}-\frac {\text {Subst}\left (\int \frac {x}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,a+b x^n\right )}{b n} \\ & = -\frac {\sqrt {-1+a+b x^n} \sqrt {1+a+b x^n}}{b n}+\frac {\left (a+b x^n\right ) \text {arccosh}\left (a+b x^n\right )}{b n} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.91 \[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=\frac {-\sqrt {-1+a+b x^n} \sqrt {1+a+b x^n}+\left (a+b x^n\right ) \text {arccosh}\left (a+b x^n\right )}{b n} \]

[In]

Integrate[x^(-1 + n)*ArcCosh[a + b*x^n],x]

[Out]

(-(Sqrt[-1 + a + b*x^n]*Sqrt[1 + a + b*x^n]) + (a + b*x^n)*ArcCosh[a + b*x^n])/(b*n)

Maple [F]

\[\int x^{n -1} \operatorname {arccosh}\left (a +b \,x^{n}\right )d x\]

[In]

int(x^(n-1)*arccosh(a+b*x^n),x)

[Out]

int(x^(n-1)*arccosh(a+b*x^n),x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 152 vs. \(2 (51) = 102\).

Time = 0.27 (sec) , antiderivative size = 152, normalized size of antiderivative = 2.76 \[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=\frac {{\left (b \cosh \left (n \log \left (x\right )\right ) + b \sinh \left (n \log \left (x\right )\right ) + a\right )} \log \left (b \cosh \left (n \log \left (x\right )\right ) + b \sinh \left (n \log \left (x\right )\right ) + a + \sqrt {\frac {2 \, a b + {\left (a^{2} + b^{2} - 1\right )} \cosh \left (n \log \left (x\right )\right ) - {\left (a^{2} - b^{2} - 1\right )} \sinh \left (n \log \left (x\right )\right )}{\cosh \left (n \log \left (x\right )\right ) - \sinh \left (n \log \left (x\right )\right )}}\right ) - \sqrt {\frac {2 \, a b + {\left (a^{2} + b^{2} - 1\right )} \cosh \left (n \log \left (x\right )\right ) - {\left (a^{2} - b^{2} - 1\right )} \sinh \left (n \log \left (x\right )\right )}{\cosh \left (n \log \left (x\right )\right ) - \sinh \left (n \log \left (x\right )\right )}}}{b n} \]

[In]

integrate(x^(-1+n)*arccosh(a+b*x^n),x, algorithm="fricas")

[Out]

((b*cosh(n*log(x)) + b*sinh(n*log(x)) + a)*log(b*cosh(n*log(x)) + b*sinh(n*log(x)) + a + sqrt((2*a*b + (a^2 +
b^2 - 1)*cosh(n*log(x)) - (a^2 - b^2 - 1)*sinh(n*log(x)))/(cosh(n*log(x)) - sinh(n*log(x))))) - sqrt((2*a*b +
(a^2 + b^2 - 1)*cosh(n*log(x)) - (a^2 - b^2 - 1)*sinh(n*log(x)))/(cosh(n*log(x)) - sinh(n*log(x)))))/(b*n)

Sympy [F]

\[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=\int x^{n - 1} \operatorname {acosh}{\left (a + b x^{n} \right )}\, dx \]

[In]

integrate(x**(-1+n)*acosh(a+b*x**n),x)

[Out]

Integral(x**(n - 1)*acosh(a + b*x**n), x)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.71 \[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=\frac {{\left (b x^{n} + a\right )} \operatorname {arcosh}\left (b x^{n} + a\right ) - \sqrt {{\left (b x^{n} + a\right )}^{2} - 1}}{b n} \]

[In]

integrate(x^(-1+n)*arccosh(a+b*x^n),x, algorithm="maxima")

[Out]

((b*x^n + a)*arccosh(b*x^n + a) - sqrt((b*x^n + a)^2 - 1))/(b*n)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 124 vs. \(2 (51) = 102\).

Time = 0.34 (sec) , antiderivative size = 124, normalized size of antiderivative = 2.25 \[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=-\frac {b {\left (\frac {a \log \left ({\left | -a b - {\left (x^{n} {\left | b \right |} - \sqrt {b^{2} x^{2 \, n} + 2 \, a b x^{n} + a^{2} - 1}\right )} {\left | b \right |} \right |}\right )}{b {\left | b \right |}} + \frac {\sqrt {b^{2} x^{2 \, n} + 2 \, a b x^{n} + a^{2} - 1}}{b^{2}}\right )} - x^{n} \log \left (b x^{n} + a + \sqrt {b^{2} x^{2 \, n} + 2 \, a b x^{n} + a^{2} - 1}\right )}{n} \]

[In]

integrate(x^(-1+n)*arccosh(a+b*x^n),x, algorithm="giac")

[Out]

-(b*(a*log(abs(-a*b - (x^n*abs(b) - sqrt(b^2*x^(2*n) + 2*a*b*x^n + a^2 - 1))*abs(b)))/(b*abs(b)) + sqrt(b^2*x^
(2*n) + 2*a*b*x^n + a^2 - 1)/b^2) - x^n*log(b*x^n + a + sqrt(b^2*x^(2*n) + 2*a*b*x^n + a^2 - 1)))/n

Mupad [B] (verification not implemented)

Time = 3.59 (sec) , antiderivative size = 303, normalized size of antiderivative = 5.51 \[ \int x^{-1+n} \text {arccosh}\left (a+b x^n\right ) \, dx=\frac {x^n\,\mathrm {acosh}\left (a+b\,x^n\right )}{n}-\frac {\frac {4\,a\,{\left (\sqrt {a-1}-\sqrt {a+b\,x^n-1}\right )}^3}{b\,{\left (\sqrt {a+1}-\sqrt {a+b\,x^n+1}\right )}^3}+\frac {4\,a\,\left (\sqrt {a-1}-\sqrt {a+b\,x^n-1}\right )}{b\,\left (\sqrt {a+1}-\sqrt {a+b\,x^n+1}\right )}-\frac {8\,{\left (\sqrt {a-1}-\sqrt {a+b\,x^n-1}\right )}^2\,\sqrt {a-1}\,\sqrt {a+1}}{b\,{\left (\sqrt {a+1}-\sqrt {a+b\,x^n+1}\right )}^2}}{n\,\left (\frac {{\left (\sqrt {a-1}-\sqrt {a+b\,x^n-1}\right )}^4}{{\left (\sqrt {a+1}-\sqrt {a+b\,x^n+1}\right )}^4}-\frac {2\,{\left (\sqrt {a-1}-\sqrt {a+b\,x^n-1}\right )}^2}{{\left (\sqrt {a+1}-\sqrt {a+b\,x^n+1}\right )}^2}+1\right )}+\frac {4\,a\,\mathrm {atanh}\left (\frac {\sqrt {a-1}-\sqrt {a+b\,x^n-1}}{\sqrt {a+1}-\sqrt {a+b\,x^n+1}}\right )}{b\,n} \]

[In]

int(x^(n - 1)*acosh(a + b*x^n),x)

[Out]

(x^n*acosh(a + b*x^n))/n - ((4*a*((a - 1)^(1/2) - (a + b*x^n - 1)^(1/2))^3)/(b*((a + 1)^(1/2) - (a + b*x^n + 1
)^(1/2))^3) + (4*a*((a - 1)^(1/2) - (a + b*x^n - 1)^(1/2)))/(b*((a + 1)^(1/2) - (a + b*x^n + 1)^(1/2))) - (8*(
(a - 1)^(1/2) - (a + b*x^n - 1)^(1/2))^2*(a - 1)^(1/2)*(a + 1)^(1/2))/(b*((a + 1)^(1/2) - (a + b*x^n + 1)^(1/2
))^2))/(n*(((a - 1)^(1/2) - (a + b*x^n - 1)^(1/2))^4/((a + 1)^(1/2) - (a + b*x^n + 1)^(1/2))^4 - (2*((a - 1)^(
1/2) - (a + b*x^n - 1)^(1/2))^2)/((a + 1)^(1/2) - (a + b*x^n + 1)^(1/2))^2 + 1)) + (4*a*atanh(((a - 1)^(1/2) -
 (a + b*x^n - 1)^(1/2))/((a + 1)^(1/2) - (a + b*x^n + 1)^(1/2))))/(b*n)