3.10.87 \(\int e^{\tanh ^{-1}(a x)} x^m (c-a^2 c x^2)^2 \, dx\) [987]

Optimal. Leaf size=80 \[ \frac {c^2 x^{1+m} \, _2F_1\left (-\frac {3}{2},\frac {1+m}{2};\frac {3+m}{2};a^2 x^2\right )}{1+m}+\frac {a c^2 x^{2+m} \, _2F_1\left (-\frac {3}{2},\frac {2+m}{2};\frac {4+m}{2};a^2 x^2\right )}{2+m} \]

[Out]

c^2*x^(1+m)*hypergeom([-3/2, 1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/(1+m)+a*c^2*x^(2+m)*hypergeom([-3/2, 1+1/2*m],[2+
1/2*m],a^2*x^2)/(2+m)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {6283, 822, 371} \begin {gather*} \frac {c^2 x^{m+1} \, _2F_1\left (-\frac {3}{2},\frac {m+1}{2};\frac {m+3}{2};a^2 x^2\right )}{m+1}+\frac {a c^2 x^{m+2} \, _2F_1\left (-\frac {3}{2},\frac {m+2}{2};\frac {m+4}{2};a^2 x^2\right )}{m+2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]*x^m*(c - a^2*c*x^2)^2,x]

[Out]

(c^2*x^(1 + m)*Hypergeometric2F1[-3/2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(1 + m) + (a*c^2*x^(2 + m)*Hypergeometr
ic2F1[-3/2, (2 + m)/2, (4 + m)/2, a^2*x^2])/(2 + m)

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 822

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 6283

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a^2*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || Gt
Q[c, 0]) && IGtQ[(n + 1)/2, 0] &&  !IntegerQ[p - n/2]

Rubi steps

\begin {align*} \int e^{\tanh ^{-1}(a x)} x^m \left (c-a^2 c x^2\right )^2 \, dx &=c^2 \int x^m (1+a x) \left (1-a^2 x^2\right )^{3/2} \, dx\\ &=c^2 \int x^m \left (1-a^2 x^2\right )^{3/2} \, dx+\left (a c^2\right ) \int x^{1+m} \left (1-a^2 x^2\right )^{3/2} \, dx\\ &=\frac {c^2 x^{1+m} \, _2F_1\left (-\frac {3}{2},\frac {1+m}{2};\frac {3+m}{2};a^2 x^2\right )}{1+m}+\frac {a c^2 x^{2+m} \, _2F_1\left (-\frac {3}{2},\frac {2+m}{2};\frac {4+m}{2};a^2 x^2\right )}{2+m}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 82, normalized size = 1.02 \begin {gather*} c^2 \left (\frac {x^{1+m} \, _2F_1\left (-\frac {3}{2},\frac {1+m}{2};1+\frac {1+m}{2};a^2 x^2\right )}{1+m}+\frac {a x^{2+m} \, _2F_1\left (-\frac {3}{2},\frac {2+m}{2};1+\frac {2+m}{2};a^2 x^2\right )}{2+m}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^ArcTanh[a*x]*x^m*(c - a^2*c*x^2)^2,x]

[Out]

c^2*((x^(1 + m)*Hypergeometric2F1[-3/2, (1 + m)/2, 1 + (1 + m)/2, a^2*x^2])/(1 + m) + (a*x^(2 + m)*Hypergeomet
ric2F1[-3/2, (2 + m)/2, 1 + (2 + m)/2, a^2*x^2])/(2 + m))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(226\) vs. \(2(72)=144\).
time = 0.08, size = 227, normalized size = 2.84

method result size
meijerg \(\frac {a^{5} c^{2} x^{6+m} \hypergeom \left (\left [\frac {1}{2}, 3+\frac {m}{2}\right ], \left [4+\frac {m}{2}\right ], a^{2} x^{2}\right )}{6+m}-\frac {2 a^{3} c^{2} x^{4+m} \hypergeom \left (\left [\frac {1}{2}, 2+\frac {m}{2}\right ], \left [3+\frac {m}{2}\right ], a^{2} x^{2}\right )}{4+m}+\frac {a \,c^{2} x^{2+m} \hypergeom \left (\left [\frac {1}{2}, 1+\frac {m}{2}\right ], \left [2+\frac {m}{2}\right ], a^{2} x^{2}\right )}{2+m}+\frac {c^{2} a^{4} x^{5+m} \hypergeom \left (\left [\frac {1}{2}, \frac {5}{2}+\frac {m}{2}\right ], \left [\frac {7}{2}+\frac {m}{2}\right ], a^{2} x^{2}\right )}{5+m}-\frac {2 c^{2} a^{2} x^{3+m} \hypergeom \left (\left [\frac {1}{2}, \frac {3}{2}+\frac {m}{2}\right ], \left [\frac {5}{2}+\frac {m}{2}\right ], a^{2} x^{2}\right )}{3+m}+\frac {c^{2} x^{1+m} \hypergeom \left (\left [\frac {1}{2}, \frac {1}{2}+\frac {m}{2}\right ], \left [\frac {3}{2}+\frac {m}{2}\right ], a^{2} x^{2}\right )}{1+m}\) \(227\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^2,x,method=_RETURNVERBOSE)

[Out]

a^5*c^2/(6+m)*x^(6+m)*hypergeom([1/2,3+1/2*m],[4+1/2*m],a^2*x^2)-2*a^3*c^2/(4+m)*x^(4+m)*hypergeom([1/2,2+1/2*
m],[3+1/2*m],a^2*x^2)+a*c^2/(2+m)*x^(2+m)*hypergeom([1/2,1+1/2*m],[2+1/2*m],a^2*x^2)+c^2*a^4/(5+m)*x^(5+m)*hyp
ergeom([1/2,5/2+1/2*m],[7/2+1/2*m],a^2*x^2)-2*c^2*a^2/(3+m)*x^(3+m)*hypergeom([1/2,3/2+1/2*m],[5/2+1/2*m],a^2*
x^2)+c^2/(1+m)*x^(1+m)*hypergeom([1/2,1/2+1/2*m],[3/2+1/2*m],a^2*x^2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^2,x, algorithm="maxima")

[Out]

integrate((a^2*c*x^2 - c)^2*(a*x + 1)*x^m/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^2,x, algorithm="fricas")

[Out]

integral(-(a^3*c^2*x^3 + a^2*c^2*x^2 - a*c^2*x - c^2)*sqrt(-a^2*x^2 + 1)*x^m, x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 7.38, size = 325, normalized size = 4.06 \begin {gather*} \frac {a^{5} c^{2} x^{6} x^{m} \Gamma \left (\frac {m}{2} + 3\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + 3 \\ \frac {m}{2} + 4 \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + 4\right )} + \frac {a^{4} c^{2} x^{5} x^{m} \Gamma \left (\frac {m}{2} + \frac {5}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + \frac {5}{2} \\ \frac {m}{2} + \frac {7}{2} \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {7}{2}\right )} - \frac {a^{3} c^{2} x^{4} x^{m} \Gamma \left (\frac {m}{2} + 2\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + 2 \\ \frac {m}{2} + 3 \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{\Gamma \left (\frac {m}{2} + 3\right )} - \frac {a^{2} c^{2} x^{3} x^{m} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + \frac {3}{2} \\ \frac {m}{2} + \frac {5}{2} \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{\Gamma \left (\frac {m}{2} + \frac {5}{2}\right )} + \frac {a c^{2} x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + 1 \\ \frac {m}{2} + 2 \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + 2\right )} + \frac {c^{2} x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + \frac {1}{2} \\ \frac {m}{2} + \frac {3}{2} \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**m*(-a**2*c*x**2+c)**2,x)

[Out]

a**5*c**2*x**6*x**m*gamma(m/2 + 3)*hyper((1/2, m/2 + 3), (m/2 + 4,), a**2*x**2*exp_polar(2*I*pi))/(2*gamma(m/2
 + 4)) + a**4*c**2*x**5*x**m*gamma(m/2 + 5/2)*hyper((1/2, m/2 + 5/2), (m/2 + 7/2,), a**2*x**2*exp_polar(2*I*pi
))/(2*gamma(m/2 + 7/2)) - a**3*c**2*x**4*x**m*gamma(m/2 + 2)*hyper((1/2, m/2 + 2), (m/2 + 3,), a**2*x**2*exp_p
olar(2*I*pi))/gamma(m/2 + 3) - a**2*c**2*x**3*x**m*gamma(m/2 + 3/2)*hyper((1/2, m/2 + 3/2), (m/2 + 5/2,), a**2
*x**2*exp_polar(2*I*pi))/gamma(m/2 + 5/2) + a*c**2*x**2*x**m*gamma(m/2 + 1)*hyper((1/2, m/2 + 1), (m/2 + 2,),
a**2*x**2*exp_polar(2*I*pi))/(2*gamma(m/2 + 2)) + c**2*x*x**m*gamma(m/2 + 1/2)*hyper((1/2, m/2 + 1/2), (m/2 +
3/2,), a**2*x**2*exp_polar(2*I*pi))/(2*gamma(m/2 + 3/2))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^2,x, algorithm="giac")

[Out]

integrate((a^2*c*x^2 - c)^2*(a*x + 1)*x^m/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^m\,{\left (c-a^2\,c\,x^2\right )}^2\,\left (a\,x+1\right )}{\sqrt {1-a^2\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^m*(c - a^2*c*x^2)^2*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)

[Out]

int((x^m*(c - a^2*c*x^2)^2*(a*x + 1))/(1 - a^2*x^2)^(1/2), x)

________________________________________________________________________________________